Some estimates for commutators of Riesz transform associated with Schrödinger type operators
Yu Liu; Jing Zhang; Jie-Lai Sheng; Li-Juan Wang
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 169-191
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Yu, et al. "Some estimates for commutators of Riesz transform associated with Schrödinger type operators." Czechoslovak Mathematical Journal 66.1 (2016): 169-191. <http://eudml.org/doc/276801>.
@article{Liu2016,
abstract = {Let $\mathcal \{L\}_1=-\Delta +V$ be a Schrödinger operator and let $\mathcal \{L\}_2=(-\Delta )^2+V^2$ be a Schrödinger type operator on $\{\mathbb \{R\}^n\}$$(n \ge 5)$, where $V \ne 0$ is a nonnegative potential belonging to certain reverse Hölder class $B_s$ for $s\ge \{n\}/\{2\}$. The Hardy type space $H^1_\{\mathcal \{L\}_2\}$ is defined in terms of the maximal function with respect to the semigroup $\lbrace \{\rm e\}^\{-t \mathcal \{L\}_2\}\rbrace $ and it is identical to the Hardy space $H^1_\{\mathcal \{L\}_1\}$ established by Dziubański and Zienkiewicz. In this article, we prove the $L^p$-boundedness of the commutator $\mathcal \{R\}_b=b\mathcal \{R\}f-\mathcal \{R\}(bf)$ generated by the Riesz transform $\mathcal \{R\}=\nabla ^2\mathcal \{L\}_2^\{-\{1\}/\{2\}\}$, where $b\in \{\rm BMO\}_\theta (\rho )$, which is larger than the space $\{\rm BMO\}(\mathbb \{R\}^n)$. Moreover, we prove that $\mathcal \{R\}_b$ is bounded from the Hardy space $H_\{\mathcal \{L\}_2\}^1(\mathbb \{R\}^n)$ into weak $L_\{\rm weak\}^1(\mathbb \{R\}^n)$.},
author = {Liu, Yu, Zhang, Jing, Sheng, Jie-Lai, Wang, Li-Juan},
journal = {Czechoslovak Mathematical Journal},
keywords = {commutator; Hardy space; reverse Hölder inequality; Riesz transform; Schrödinger operator; Schrödinger type operator},
language = {eng},
number = {1},
pages = {169-191},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some estimates for commutators of Riesz transform associated with Schrödinger type operators},
url = {http://eudml.org/doc/276801},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Liu, Yu
AU - Zhang, Jing
AU - Sheng, Jie-Lai
AU - Wang, Li-Juan
TI - Some estimates for commutators of Riesz transform associated with Schrödinger type operators
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 169
EP - 191
AB - Let $\mathcal {L}_1=-\Delta +V$ be a Schrödinger operator and let $\mathcal {L}_2=(-\Delta )^2+V^2$ be a Schrödinger type operator on ${\mathbb {R}^n}$$(n \ge 5)$, where $V \ne 0$ is a nonnegative potential belonging to certain reverse Hölder class $B_s$ for $s\ge {n}/{2}$. The Hardy type space $H^1_{\mathcal {L}_2}$ is defined in terms of the maximal function with respect to the semigroup $\lbrace {\rm e}^{-t \mathcal {L}_2}\rbrace $ and it is identical to the Hardy space $H^1_{\mathcal {L}_1}$ established by Dziubański and Zienkiewicz. In this article, we prove the $L^p$-boundedness of the commutator $\mathcal {R}_b=b\mathcal {R}f-\mathcal {R}(bf)$ generated by the Riesz transform $\mathcal {R}=\nabla ^2\mathcal {L}_2^{-{1}/{2}}$, where $b\in {\rm BMO}_\theta (\rho )$, which is larger than the space ${\rm BMO}(\mathbb {R}^n)$. Moreover, we prove that $\mathcal {R}_b$ is bounded from the Hardy space $H_{\mathcal {L}_2}^1(\mathbb {R}^n)$ into weak $L_{\rm weak}^1(\mathbb {R}^n)$.
LA - eng
KW - commutator; Hardy space; reverse Hölder inequality; Riesz transform; Schrödinger operator; Schrödinger type operator
UR - http://eudml.org/doc/276801
ER -
References
top- Bongioanni, B., Harboure, E., Salinas, O., 10.1007/s00041-010-9133-6, J. Fourier Anal. Appl. 17 (2011), 115-134. (2011) Zbl1213.42075MR2765594DOI10.1007/s00041-010-9133-6
- Bramanti, M., Cerutti, C. M., Commutators of singular integrals on homogeneous spaces, Boll. Unione Mat. Ital. 10 (1996), 843-883. (1996) MR1430157
- Cao, J., Liu, Y., Yang, D., Hardy spaces associated to Schrödinger type operators , Houston J. Math. 36 (2010), 1067-1095. (2010) MR2753734
- Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. 103 (1976), 611-635. (1976) MR0412721DOI10.2307/1970954
- Duong, X. T., Yan, L., 10.1017/S0004972700033669, Bull. Aust. Math. Soc. 67 (2003), 187-200. (2003) Zbl1023.42010MR1972709DOI10.1017/S0004972700033669
- Dziubański, J., Zienkiewicz, J., 10.4171/RMI/257, Rev. Mat. Iberoam 15 (1999), 279-296. (1999) MR1715409DOI10.4171/RMI/257
- Guo, Z., Li, P., Peng, L., 10.1016/j.jmaa.2007.05.024, J. Math. Anal. Appl. 341 (2008), 421-432. (2008) MR2394095DOI10.1016/j.jmaa.2007.05.024
- Janson, S., 10.1007/BF02386000, Ark. Math. 16 (1978), 263-270. (1978) Zbl0404.42013MR0524754DOI10.1007/BF02386000
- Li, H. Q., 10.1006/jfan.1998.3347, J. Funct. Anal. 161 (1999), French 152-218. (1999) MR1670222DOI10.1006/jfan.1998.3347
- Li, P., Peng, L., 10.1017/S0004972710000390, Bull. Aust. Math. Soc. 82 (2010), 367-389. (2010) Zbl1210.47048MR2737950DOI10.1017/S0004972710000390
- Liu, Y., 10.4134/JKMS.2010.47.2.425, J. Korean Math. Soc. 47 (2010), 425-443. (2010) Zbl1187.22008MR2605991DOI10.4134/JKMS.2010.47.2.425
- Liu, Y., Dong, J., 10.1007/s11118-009-9143-7, Potential Anal. 32 (2010), 41-55. (2010) Zbl1197.42008MR2575385DOI10.1007/s11118-009-9143-7
- Liu, Y., Huang, J. Z., Dong, J. F., 10.1007/s11425-012-4551-3, Sci. China. Math. 56 (2013), 1895-1913. (2013) Zbl1278.42031MR3090862DOI10.1007/s11425-012-4551-3
- Liu, Y., Huang, J., Xie, D., 10.1007/s00013-009-0098-0, Arch. Math. 94 (2010), 255-264. (2010) Zbl1189.22006MR2602452DOI10.1007/s00013-009-0098-0
- Liu, Y., Sheng, J., 10.1016/j.jmaa.2014.04.053, J. Math. Anal. Appl. 419 (2014), 298-328. (2014) MR3217150DOI10.1016/j.jmaa.2014.04.053
- Liu, Y., Wang, L., Dong, J., Commutators of higher order Riesz transform associated with Schrödinger operators, J. Funct. Spaces Appl. 2013 (2013), Article ID 842375, 15 pages. (2013) Zbl1279.47052MR3053277
- Shen, Z., 10.5802/aif.1463, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. (1995) MR1343560DOI10.5802/aif.1463
- Sugano, S., 10.3836/tjm/1184963655, Tokyo J. Math. 30 (2007), 179-197. (2007) MR2328062DOI10.3836/tjm/1184963655
- Zhong, J., Harmonic Analysis for some Schrödinger Type Operators, Ph.D. Thesis, Princeton University (1993). (1993) MR2689454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.