Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics
Xiushan Cai; Linling Liao; Junfeng Zhang; Wei Zhang
Kybernetika (2016)
- Volume: 52, Issue: 1, page 76-88
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCai, Xiushan, et al. "Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics." Kybernetika 52.1 (2016): 76-88. <http://eudml.org/doc/276805>.
@article{Cai2016,
abstract = {Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the ODE subsystem and the state of the pair of counter-convecting transport dynamics are estimated. It is shown that the observer error is asymptotically stable. A numerical example is given to illustrate the effectiveness of the proposed method.},
author = {Cai, Xiushan, Liao, Linling, Zhang, Junfeng, Zhang, Wei},
journal = {Kybernetika},
keywords = {nonlinear systems; observer design; backstepping; counter-convecting transport dynamics},
language = {eng},
number = {1},
pages = {76-88},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics},
url = {http://eudml.org/doc/276805},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Cai, Xiushan
AU - Liao, Linling
AU - Zhang, Junfeng
AU - Zhang, Wei
TI - Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 1
SP - 76
EP - 88
AB - Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the ODE subsystem and the state of the pair of counter-convecting transport dynamics are estimated. It is shown that the observer error is asymptotically stable. A numerical example is given to illustrate the effectiveness of the proposed method.
LA - eng
KW - nonlinear systems; observer design; backstepping; counter-convecting transport dynamics
UR - http://eudml.org/doc/276805
ER -
References
top- Andrieu, V., Praly, L., 10.1137/040617066, SIAM J. Control Optim. 45 (2006), 432-456. MR2246084DOI10.1137/040617066
- Cai, X., Krstic, M., 10.1080/23307706.2014.885290, J. Control Decision 1 (2014), 34-50. DOI10.1080/23307706.2014.885290
- Cai, X., Krstic, M., 10.1002/rnc.3083, Int. J. Robust. Nonlinear Control 25 (2015), 222-253. Zbl1305.93167MR3293094DOI10.1002/rnc.3083
- Cai, X., Lin, Y., Liu, L., 10.1049/iet-cta.2014.1085, IET Control Theory Appl. 9 (2015), 1481-1490. MR3381705DOI10.1049/iet-cta.2014.1085
- Coron, J., Vazquez, R., Krstic, M., Bastin, G., 10.1137/120875739, SIAM J. Control Optim. 51 (2013), 2005-2035. MR3049647DOI10.1137/120875739
- Curro, C., Fusco, D., Manganaro, N., 10.1088/1751-8113/44/33/335205, J. Physics A: Math. Theory 44 (2011), 335205. Zbl1223.35220MR2822118DOI10.1088/1751-8113/44/33/335205
- Santos, V. Dos, Prieur, C., 10.1109/tcst.2008.919418, IEEE Trans. Control System Technol. 16 (2008), 1252-1264. DOI10.1109/tcst.2008.919418
- Fridman, L., Shtessel, Y., Edwards, C., Yan, X. G., 10.1002/rnc.1198, Int. J. Robust Nonlinear Control 18 (2008), 399-412. MR2392130DOI10.1002/rnc.1198
- Goatin, P., 10.1016/j.mcm.2006.01.016, Math. Computer Modeling 44 (2006), 287-303. Zbl1134.35379MR2239057DOI10.1016/j.mcm.2006.01.016
- Gugat, M., Dick, M., 10.3934/mcrf.2011.1.469, Math. Control Related Fields 1 (2011), 469-491. MR2871937DOI10.3934/mcrf.2011.1.469
- Krstic, M., 10.1109/tac.2009.2015557, Systems Control Lett. 54 (2009), 1362-1368. MR2532631DOI10.1109/tac.2009.2015557
- Krstic, M., 10.1016/j.sysconle.2009.01.006, Systems Control Lett. 58 (2009), 372-377. Zbl1159.93024MR2512493DOI10.1016/j.sysconle.2009.01.006
- Krstic, M., Bekiaris-Liberis, N., 10.1016/j.arcontrol.2013.09.002, Ann. Rev. Control 37 (2013), 220-231. DOI10.1016/j.arcontrol.2013.09.002
- Krstic, M., Smyshlyaev, A., 10.1016/j.arcontrol.2013.09.002, Systems Control Lett. 57 (2008), 750-758. Zbl1153.93022MR2446460DOI10.1016/j.arcontrol.2013.09.002
- Meglio, F. Di, Krstic, M., Vazquez, R., Petit, N., 10.1109/acc.2012.6315422, In: Proc. American Control Conference, Montreal 2012, pp. 3365-3370. DOI10.1109/acc.2012.6315422
- Meglio, F. Di, Vazquez, R., Krstic, M., 10.1109/tac.2013.2274723, IEEE Trans. Automat. Control 58 (2013), 3097-3111. MR3152271DOI10.1109/tac.2013.2274723
- Shim, H., Son, Y. I., Seo, J. H., 10.1016/s0167-6911(00)00098-0, System Control Lett. 42 (2001), 233-244. MR2007052DOI10.1016/s0167-6911(00)00098-0
- Vazquez, R., Krstic, M., 10.1016/j.automatica.2008.04.013, Automatica 44 (2008), 2778-2790. MR2527199DOI10.1016/j.automatica.2008.04.013
- Vazquez, R., Krstic, M., 10.1016/j.automatica.2008.04.007, Automatica 44 (2008), 2791-2803. MR2527200DOI10.1016/j.automatica.2008.04.007
- Wu, H., Wang, J., 10.1007/s11071-012-0740-4, Nonlinear Dyn. 72 (2013), 615-628. Zbl1268.93124MR3046917DOI10.1007/s11071-012-0740-4
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.