Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics

Xiushan Cai; Linling Liao; Junfeng Zhang; Wei Zhang

Kybernetika (2016)

  • Volume: 52, Issue: 1, page 76-88
  • ISSN: 0023-5954

Abstract

top
Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the ODE subsystem and the state of the pair of counter-convecting transport dynamics are estimated. It is shown that the observer error is asymptotically stable. A numerical example is given to illustrate the effectiveness of the proposed method.

How to cite

top

Cai, Xiushan, et al. "Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics." Kybernetika 52.1 (2016): 76-88. <http://eudml.org/doc/276805>.

@article{Cai2016,
abstract = {Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the ODE subsystem and the state of the pair of counter-convecting transport dynamics are estimated. It is shown that the observer error is asymptotically stable. A numerical example is given to illustrate the effectiveness of the proposed method.},
author = {Cai, Xiushan, Liao, Linling, Zhang, Junfeng, Zhang, Wei},
journal = {Kybernetika},
keywords = {nonlinear systems; observer design; backstepping; counter-convecting transport dynamics},
language = {eng},
number = {1},
pages = {76-88},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics},
url = {http://eudml.org/doc/276805},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Cai, Xiushan
AU - Liao, Linling
AU - Zhang, Junfeng
AU - Zhang, Wei
TI - Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 1
SP - 76
EP - 88
AB - Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the ODE subsystem and the state of the pair of counter-convecting transport dynamics are estimated. It is shown that the observer error is asymptotically stable. A numerical example is given to illustrate the effectiveness of the proposed method.
LA - eng
KW - nonlinear systems; observer design; backstepping; counter-convecting transport dynamics
UR - http://eudml.org/doc/276805
ER -

References

top
  1. Andrieu, V., Praly, L., 10.1137/040617066, SIAM J. Control Optim. 45 (2006), 432-456. MR2246084DOI10.1137/040617066
  2. Cai, X., Krstic, M., 10.1080/23307706.2014.885290, J. Control Decision 1 (2014), 34-50. DOI10.1080/23307706.2014.885290
  3. Cai, X., Krstic, M., 10.1002/rnc.3083, Int. J. Robust. Nonlinear Control 25 (2015), 222-253. Zbl1305.93167MR3293094DOI10.1002/rnc.3083
  4. Cai, X., Lin, Y., Liu, L., 10.1049/iet-cta.2014.1085, IET Control Theory Appl. 9 (2015), 1481-1490. MR3381705DOI10.1049/iet-cta.2014.1085
  5. Coron, J., Vazquez, R., Krstic, M., Bastin, G., 10.1137/120875739, SIAM J. Control Optim. 51 (2013), 2005-2035. MR3049647DOI10.1137/120875739
  6. Curro, C., Fusco, D., Manganaro, N., 10.1088/1751-8113/44/33/335205, J. Physics A: Math. Theory 44 (2011), 335205. Zbl1223.35220MR2822118DOI10.1088/1751-8113/44/33/335205
  7. Santos, V. Dos, Prieur, C., 10.1109/tcst.2008.919418, IEEE Trans. Control System Technol. 16 (2008), 1252-1264. DOI10.1109/tcst.2008.919418
  8. Fridman, L., Shtessel, Y., Edwards, C., Yan, X. G., 10.1002/rnc.1198, Int. J. Robust Nonlinear Control 18 (2008), 399-412. MR2392130DOI10.1002/rnc.1198
  9. Goatin, P., 10.1016/j.mcm.2006.01.016, Math. Computer Modeling 44 (2006), 287-303. Zbl1134.35379MR2239057DOI10.1016/j.mcm.2006.01.016
  10. Gugat, M., Dick, M., 10.3934/mcrf.2011.1.469, Math. Control Related Fields 1 (2011), 469-491. MR2871937DOI10.3934/mcrf.2011.1.469
  11. Krstic, M., 10.1109/tac.2009.2015557, Systems Control Lett. 54 (2009), 1362-1368. MR2532631DOI10.1109/tac.2009.2015557
  12. Krstic, M., 10.1016/j.sysconle.2009.01.006, Systems Control Lett. 58 (2009), 372-377. Zbl1159.93024MR2512493DOI10.1016/j.sysconle.2009.01.006
  13. Krstic, M., Bekiaris-Liberis, N., 10.1016/j.arcontrol.2013.09.002, Ann. Rev. Control 37 (2013), 220-231. DOI10.1016/j.arcontrol.2013.09.002
  14. Krstic, M., Smyshlyaev, A., 10.1016/j.arcontrol.2013.09.002, Systems Control Lett. 57 (2008), 750-758. Zbl1153.93022MR2446460DOI10.1016/j.arcontrol.2013.09.002
  15. Meglio, F. Di, Krstic, M., Vazquez, R., Petit, N., 10.1109/acc.2012.6315422, In: Proc. American Control Conference, Montreal 2012, pp. 3365-3370. DOI10.1109/acc.2012.6315422
  16. Meglio, F. Di, Vazquez, R., Krstic, M., 10.1109/tac.2013.2274723, IEEE Trans. Automat. Control 58 (2013), 3097-3111. MR3152271DOI10.1109/tac.2013.2274723
  17. Shim, H., Son, Y. I., Seo, J. H., 10.1016/s0167-6911(00)00098-0, System Control Lett. 42 (2001), 233-244. MR2007052DOI10.1016/s0167-6911(00)00098-0
  18. Vazquez, R., Krstic, M., 10.1016/j.automatica.2008.04.013, Automatica 44 (2008), 2778-2790. MR2527199DOI10.1016/j.automatica.2008.04.013
  19. Vazquez, R., Krstic, M., 10.1016/j.automatica.2008.04.007, Automatica 44 (2008), 2791-2803. MR2527200DOI10.1016/j.automatica.2008.04.007
  20. Wu, H., Wang, J., 10.1007/s11071-012-0740-4, Nonlinear Dyn. 72 (2013), 615-628. Zbl1268.93124MR3046917DOI10.1007/s11071-012-0740-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.