Predictor control for wave PDE / nonlinear ODE cascaded system with boundary value-dependent propagation speed
Xiushan Cai; Yuhang Lin; Junfeng Zhang; Cong Lin
Kybernetika (2022)
- Volume: 58, Issue: 3, page 400-425
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCai, Xiushan, et al. "Predictor control for wave PDE / nonlinear ODE cascaded system with boundary value-dependent propagation speed." Kybernetika 58.3 (2022): 400-425. <http://eudml.org/doc/298881>.
@article{Cai2022,
abstract = {This paper investigates predictor control for wave partial differential equation (PDE) and nonlinear ordinary differential equation (ODE) cascaded system with boundary value-dependent propagation speed. A predictor control is designed first. A two-step backstepping transformation and a new time variable are employed to derive a target system whose stability is established using Lyapunov arguments. The equivalence between stability of the target and the original system is provided using the invertibility of the backstepping transformations. Stability of the closed-loop system is established by Lyapunov arguments.},
author = {Cai, Xiushan, Lin, Yuhang, Zhang, Junfeng, Lin, Cong},
journal = {Kybernetika},
keywords = {cascaded system; wave dynamics; boundary value-dependent; predictor control; backstepping transformation},
language = {eng},
number = {3},
pages = {400-425},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Predictor control for wave PDE / nonlinear ODE cascaded system with boundary value-dependent propagation speed},
url = {http://eudml.org/doc/298881},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Cai, Xiushan
AU - Lin, Yuhang
AU - Zhang, Junfeng
AU - Lin, Cong
TI - Predictor control for wave PDE / nonlinear ODE cascaded system with boundary value-dependent propagation speed
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 3
SP - 400
EP - 425
AB - This paper investigates predictor control for wave partial differential equation (PDE) and nonlinear ordinary differential equation (ODE) cascaded system with boundary value-dependent propagation speed. A predictor control is designed first. A two-step backstepping transformation and a new time variable are employed to derive a target system whose stability is established using Lyapunov arguments. The equivalence between stability of the target and the original system is provided using the invertibility of the backstepping transformations. Stability of the closed-loop system is established by Lyapunov arguments.
LA - eng
KW - cascaded system; wave dynamics; boundary value-dependent; predictor control; backstepping transformation
UR - http://eudml.org/doc/298881
ER -
References
top- Bekiaris-Liberis, N., Krstic, M., , IEEE Trans. Automat. Control 59 (2014), 1555-1570. MR3225229DOI
- Bresch-Pietri, D., Krstic, M., , Automatica 50 (2014), 1407-1415. MR3198779DOI
- Cai, X., Yang, J., Liu, L., Zhang, J., , Asian J. Control (2021). DOI
- Cai, X., Wu, J., Zhan, X., Zhang, X., , Kybernetika 55 (2019), 727-739. MR4043545DOI
- Cai, X., Liao, L., Zhang, J., Zhang, W., Observer design for a class of nonlinear system in cascade with counter-conveting transport dynamics., Kybernetika 52 (2016), 76-88. MR3482612
- Cai, X., Krstic, M., , Int. J. Robust. Nonlinear Control 25 (2015), 222-251. Zbl1305.93167MR3293094DOI
- Cai, X., Krstic, M., , Automatica 68 (2016), 27-38. MR3483665DOI
- Cai, X., Diagne, M., , IEEE Trans. Automat. Control 66 (2021), 4401-4408. MR4308496DOI
- Diagne, M., Bekiaris-Liberis, N., Krstic, M., , Automatica 85 (2017), 362-373. MR3712879DOI
- Jansen, J., Nonlinear Dynamics of Oilwell Drillstrings., Ph.D. Thesis, Delfh University of Technology, 1993.
- Krstic, M., , IEEE Trans. Automat. Control 55 (2010), 287-303. MR2604408DOI
- Lin, C., Cai, X., , IEEE Access 10 (2022), 35653-35664. DOI
- Meglio, F. Di, Argomedo, F. Bribiesca, Hu, L., Krstic, M., , Automatica 87 (2018), 281-289. MR3733925DOI
- Su, L., Wang, J., Krstic, M., , IEEE Trans. Automat. Control 63 (2018), 2633-2640. MR3845992DOI
- Su, L., Chen, S., Wang, J., Krstic, M., , Automatica 120 (2020), 109147(1-14). MR4130471DOI
- Saldivar, M., Mondie, S., Loiseau, J., Rasvan, V., Stick-slip oscillations in oilwell drillstrings: distributed parameter and neutral type retarded model approaches., In: Proc. 18th IFAC World Congress, Milano 2011, pp. 284-289.
- Sagert, C., Meglio, F., Krstic, M., Rouchon, P., , In: IFAC Sympositium on System Structure and Control, France 2013, pp. 779-784. DOI
- Sontag, E., , IEEE Trans. Automat. Control 34 (1989), 435-443. MR0987806DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.