Points with maximal Birkhoff average oscillation
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 223-241
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Jinjun, and Wu, Min. "Points with maximal Birkhoff average oscillation." Czechoslovak Mathematical Journal 66.1 (2016): 223-241. <http://eudml.org/doc/276808>.
@article{Li2016,
abstract = {Let $f\colon X\rightarrow X$ be a continuous map with the specification property on a compact metric space $X$. We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set.},
author = {Li, Jinjun, Wu, Min},
journal = {Czechoslovak Mathematical Journal},
keywords = {irregular set; maximal Birkhoff average oscillation; specification property; residual set},
language = {eng},
number = {1},
pages = {223-241},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Points with maximal Birkhoff average oscillation},
url = {http://eudml.org/doc/276808},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Li, Jinjun
AU - Wu, Min
TI - Points with maximal Birkhoff average oscillation
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 223
EP - 241
AB - Let $f\colon X\rightarrow X$ be a continuous map with the specification property on a compact metric space $X$. We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set.
LA - eng
KW - irregular set; maximal Birkhoff average oscillation; specification property; residual set
UR - http://eudml.org/doc/276808
ER -
References
top- Albeverio, S., Pratsiovytyi, M., Torbin, G., 10.1016/j.bulsci.2004.12.004, Bull. Sci. Math. 129 (2005), 615-630. (2005) Zbl1088.28003MR2166730DOI10.1016/j.bulsci.2004.12.004
- Baek, I.-S., Olsen, L., 10.3934/dcds.2010.27.935, Discrete Contin. Dyn. Syst. 27 (2010), 935-943. (2010) Zbl1234.11097MR2629566DOI10.3934/dcds.2010.27.935
- Barreira, L., Li, J., Valls, C., 10.2748/tmj/1432229192, Tohoku Math. J. (2) 66 (2014), 471-489. (2014) MR3350279DOI10.2748/tmj/1432229192
- Barreira, L., Schmeling, J., 10.1007/BF02773211, Isr. J. Math. 116 (2000), 29-70. (2000) MR1759398DOI10.1007/BF02773211
- Bisbas, A., Snigireva, N., 10.1007/s00605-011-0289-1, Monatsh. Math. 166 (2012), 341-356. (2012) Zbl1279.11079MR2925141DOI10.1007/s00605-011-0289-1
- Bowen, R., Periodic points and measures for axiom A diffeomorphisms, Trans. Am. Math. Soc. 154 (1971), 377-397. (1971) MR0282372
- Buzzi, J., 10.1090/S0002-9947-97-01873-4, Trans. Am. Math. Soc. 349 (1997), 2737-2754. (1997) MR1407484DOI10.1090/S0002-9947-97-01873-4
- Ercai, C., Küpper, T., Lin, S., Topological entropy for divergence points, Ergodic Theory Dyn. Syst. 25 (2005), 1173-1208. (2005) Zbl1098.37013MR2158401
- Denker, M., Grillenberger, C., Sigmund, K., Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics 527 Springer, Berlin (1976). (1976) MR0457675
- Fan, A.-H., Feng, D.-J., 10.1023/A:1018643512559, J. Stat. Phys. 99 (2000), 813-856. (2000) MR1766907DOI10.1023/A:1018643512559
- Fan, A.-H., Feng, D.-J., Wu, J., 10.1017/S0024610701002137, J. Lond. Math. Soc., (2) 64 (2001), 229-244. (2001) Zbl1011.37003MR1840781DOI10.1017/S0024610701002137
- Fan, A., Liao, L., Peyri{è}re, J., Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dyn. Syst. 21 (2008), 1103-1128. (2008) Zbl1153.37318MR2399452
- Feng, D.-J., Lau, K.-S., Wu, J., 10.1006/aima.2001.2054, Adv. Math. 169 (2002), 58-91. (2002) Zbl1033.37017MR1916371DOI10.1006/aima.2001.2054
- Hyde, J., Laschos, V., Olsen, L., Petrykiewicz, I., Shaw, A., Iterated Cesàro averages, frequencies of digits, and Baire category, Acta Arith. 144 (2010), 287-293. (2010) Zbl1226.11077MR2672291
- Katok, A., Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications 54 Cambridge Univ. Press, Cambridge (1995). (1995) Zbl0878.58020MR1326374
- Li, J., Li, B., 10.1007/s11425-015-5046-9, Sci. China Math. 59 (2016), 445-458. (2016) Zbl1338.11076MR3457047DOI10.1007/s11425-015-5046-9
- Li, J., Wu, M., 10.1007/s00013-014-0645-1, Arch. Math. (Basel) 102 (2014), 493-500. (2014) Zbl1296.54034MR3254792DOI10.1007/s00013-014-0645-1
- Li, J., Wu, M., Generic property of irregular sets in systems satisfying the specification property, Discrete Contin. Dyn. Syst. 34 (2014), 635-645. (2014) Zbl1280.54024MR3094597
- Li, J., Wu, M., 10.3934/dcds.2013.33.905, Discrete Contin. Dyn. Syst. 33 (2013), 905-920. (2013) Zbl1271.37026MR2975141DOI10.3934/dcds.2013.33.905
- Li, J., Wu, M., 10.1016/j.jmaa.2013.03.043, J. Math. Anal. Appl. 404 (2013), 429-437. (2013) Zbl1304.28008MR3045184DOI10.1016/j.jmaa.2013.03.043
- Li, J., Wu, M., Xiong, Y., 10.1088/0951-7715/25/1/93, Nonlinearity 25 (2012), 93-105. (2012) Zbl1236.28007MR2864378DOI10.1088/0951-7715/25/1/93
- Olsen, L., 10.1017/S0305004104007601, Math. Proc. Camb. Philos. Soc. 137 (2004), 43-53. (2004) Zbl1128.11038MR2075041DOI10.1017/S0305004104007601
- Olsen, L., 10.1016/j.matpur.2003.09.007, J. Math. Pures Appl. (9) 82 (2003), 1591-1649. (2003) Zbl1035.37025MR2025314DOI10.1016/j.matpur.2003.09.007
- Olsen, L., Winter, S., 10.1112/S0024610702003630, J. Lond. Math. Soc., (2) 67 (2003), 103-122. (2003) Zbl1040.28014MR1942414DOI10.1112/S0024610702003630
- Oxtoby, J. C., Measure and Category. A Survey of the Analogies between Topological and Measure Spaces, Graduate Texts in Mathematics, Vol. 2 Springer, New York (1980). (1980) MR0584443
- Pitskel, B. S., Topological pressure on noncompact sets, Funct. Anal. Appl. 22 (1988), 240-241 translation from Funkts. Anal. Prilozh. 22 (1988), 83-84. (1988) MR0961770
- Pollicott, M., Weiss, H., 10.1007/s002200050722, Commun. Math. Phys. 207 (1999), 145-171. (1999) MR1724859DOI10.1007/s002200050722
- Ruelle, D., Thermodynamic Formalism. The Mathematical Structures of Equilibrium Stastistical Mechanics, Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). (2004) MR2129258
- Šalát, T., A remark on normal numbers, Rev. Roum. Math. Pures Appl. 11 (1966), 53-56. (1966) MR0201386
- Sigmund, K., 10.1090/S0002-9947-1974-0352411-X, Trans. Am. Math. Soc. 190 (1974), 285-299. (1974) MR0352411DOI10.1090/S0002-9947-1974-0352411-X
- Takens, F., Verbitskiy, E., On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dyn. Syst. 23 (2003), 317-348. (2003) Zbl1042.37020MR1971209
- Thompson, D., 10.1080/14689360903156237, Dyn. Syst. 25 (2010), 25-51. (2010) Zbl1186.37034MR2765447DOI10.1080/14689360903156237
- Volkmann, B., Gewinnmengen, Arch. Math. 10 German (1959), 235-240. (1959) MR0105319
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.