Points with maximal Birkhoff average oscillation

Jinjun Li; Min Wu

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 223-241
  • ISSN: 0011-4642

Abstract

top
Let f : X X be a continuous map with the specification property on a compact metric space X . We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set.

How to cite

top

Li, Jinjun, and Wu, Min. "Points with maximal Birkhoff average oscillation." Czechoslovak Mathematical Journal 66.1 (2016): 223-241. <http://eudml.org/doc/276808>.

@article{Li2016,
abstract = {Let $f\colon X\rightarrow X$ be a continuous map with the specification property on a compact metric space $X$. We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set.},
author = {Li, Jinjun, Wu, Min},
journal = {Czechoslovak Mathematical Journal},
keywords = {irregular set; maximal Birkhoff average oscillation; specification property; residual set},
language = {eng},
number = {1},
pages = {223-241},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Points with maximal Birkhoff average oscillation},
url = {http://eudml.org/doc/276808},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Li, Jinjun
AU - Wu, Min
TI - Points with maximal Birkhoff average oscillation
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 223
EP - 241
AB - Let $f\colon X\rightarrow X$ be a continuous map with the specification property on a compact metric space $X$. We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set.
LA - eng
KW - irregular set; maximal Birkhoff average oscillation; specification property; residual set
UR - http://eudml.org/doc/276808
ER -

References

top
  1. Albeverio, S., Pratsiovytyi, M., Torbin, G., 10.1016/j.bulsci.2004.12.004, Bull. Sci. Math. 129 (2005), 615-630. (2005) Zbl1088.28003MR2166730DOI10.1016/j.bulsci.2004.12.004
  2. Baek, I.-S., Olsen, L., 10.3934/dcds.2010.27.935, Discrete Contin. Dyn. Syst. 27 (2010), 935-943. (2010) Zbl1234.11097MR2629566DOI10.3934/dcds.2010.27.935
  3. Barreira, L., Li, J., Valls, C., 10.2748/tmj/1432229192, Tohoku Math. J. (2) 66 (2014), 471-489. (2014) MR3350279DOI10.2748/tmj/1432229192
  4. Barreira, L., Schmeling, J., 10.1007/BF02773211, Isr. J. Math. 116 (2000), 29-70. (2000) MR1759398DOI10.1007/BF02773211
  5. Bisbas, A., Snigireva, N., 10.1007/s00605-011-0289-1, Monatsh. Math. 166 (2012), 341-356. (2012) Zbl1279.11079MR2925141DOI10.1007/s00605-011-0289-1
  6. Bowen, R., Periodic points and measures for axiom A diffeomorphisms, Trans. Am. Math. Soc. 154 (1971), 377-397. (1971) MR0282372
  7. Buzzi, J., 10.1090/S0002-9947-97-01873-4, Trans. Am. Math. Soc. 349 (1997), 2737-2754. (1997) MR1407484DOI10.1090/S0002-9947-97-01873-4
  8. Ercai, C., Küpper, T., Lin, S., Topological entropy for divergence points, Ergodic Theory Dyn. Syst. 25 (2005), 1173-1208. (2005) Zbl1098.37013MR2158401
  9. Denker, M., Grillenberger, C., Sigmund, K., Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics 527 Springer, Berlin (1976). (1976) MR0457675
  10. Fan, A.-H., Feng, D.-J., 10.1023/A:1018643512559, J. Stat. Phys. 99 (2000), 813-856. (2000) MR1766907DOI10.1023/A:1018643512559
  11. Fan, A.-H., Feng, D.-J., Wu, J., 10.1017/S0024610701002137, J. Lond. Math. Soc., (2) 64 (2001), 229-244. (2001) Zbl1011.37003MR1840781DOI10.1017/S0024610701002137
  12. Fan, A., Liao, L., Peyri{è}re, J., Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dyn. Syst. 21 (2008), 1103-1128. (2008) Zbl1153.37318MR2399452
  13. Feng, D.-J., Lau, K.-S., Wu, J., 10.1006/aima.2001.2054, Adv. Math. 169 (2002), 58-91. (2002) Zbl1033.37017MR1916371DOI10.1006/aima.2001.2054
  14. Hyde, J., Laschos, V., Olsen, L., Petrykiewicz, I., Shaw, A., Iterated Cesàro averages, frequencies of digits, and Baire category, Acta Arith. 144 (2010), 287-293. (2010) Zbl1226.11077MR2672291
  15. Katok, A., Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications 54 Cambridge Univ. Press, Cambridge (1995). (1995) Zbl0878.58020MR1326374
  16. Li, J., Li, B., 10.1007/s11425-015-5046-9, Sci. China Math. 59 (2016), 445-458. (2016) Zbl1338.11076MR3457047DOI10.1007/s11425-015-5046-9
  17. Li, J., Wu, M., 10.1007/s00013-014-0645-1, Arch. Math. (Basel) 102 (2014), 493-500. (2014) Zbl1296.54034MR3254792DOI10.1007/s00013-014-0645-1
  18. Li, J., Wu, M., Generic property of irregular sets in systems satisfying the specification property, Discrete Contin. Dyn. Syst. 34 (2014), 635-645. (2014) Zbl1280.54024MR3094597
  19. Li, J., Wu, M., 10.3934/dcds.2013.33.905, Discrete Contin. Dyn. Syst. 33 (2013), 905-920. (2013) Zbl1271.37026MR2975141DOI10.3934/dcds.2013.33.905
  20. Li, J., Wu, M., 10.1016/j.jmaa.2013.03.043, J. Math. Anal. Appl. 404 (2013), 429-437. (2013) Zbl1304.28008MR3045184DOI10.1016/j.jmaa.2013.03.043
  21. Li, J., Wu, M., Xiong, Y., 10.1088/0951-7715/25/1/93, Nonlinearity 25 (2012), 93-105. (2012) Zbl1236.28007MR2864378DOI10.1088/0951-7715/25/1/93
  22. Olsen, L., 10.1017/S0305004104007601, Math. Proc. Camb. Philos. Soc. 137 (2004), 43-53. (2004) Zbl1128.11038MR2075041DOI10.1017/S0305004104007601
  23. Olsen, L., 10.1016/j.matpur.2003.09.007, J. Math. Pures Appl. (9) 82 (2003), 1591-1649. (2003) Zbl1035.37025MR2025314DOI10.1016/j.matpur.2003.09.007
  24. Olsen, L., Winter, S., 10.1112/S0024610702003630, J. Lond. Math. Soc., (2) 67 (2003), 103-122. (2003) Zbl1040.28014MR1942414DOI10.1112/S0024610702003630
  25. Oxtoby, J. C., Measure and Category. A Survey of the Analogies between Topological and Measure Spaces, Graduate Texts in Mathematics, Vol. 2 Springer, New York (1980). (1980) MR0584443
  26. Pitskel, B. S., Topological pressure on noncompact sets, Funct. Anal. Appl. 22 (1988), 240-241 translation from Funkts. Anal. Prilozh. 22 (1988), 83-84. (1988) MR0961770
  27. Pollicott, M., Weiss, H., 10.1007/s002200050722, Commun. Math. Phys. 207 (1999), 145-171. (1999) MR1724859DOI10.1007/s002200050722
  28. Ruelle, D., Thermodynamic Formalism. The Mathematical Structures of Equilibrium Stastistical Mechanics, Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). (2004) MR2129258
  29. Šalát, T., A remark on normal numbers, Rev. Roum. Math. Pures Appl. 11 (1966), 53-56. (1966) MR0201386
  30. Sigmund, K., 10.1090/S0002-9947-1974-0352411-X, Trans. Am. Math. Soc. 190 (1974), 285-299. (1974) MR0352411DOI10.1090/S0002-9947-1974-0352411-X
  31. Takens, F., Verbitskiy, E., On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dyn. Syst. 23 (2003), 317-348. (2003) Zbl1042.37020MR1971209
  32. Thompson, D., 10.1080/14689360903156237, Dyn. Syst. 25 (2010), 25-51. (2010) Zbl1186.37034MR2765447DOI10.1080/14689360903156237
  33. Volkmann, B., Gewinnmengen, Arch. Math. 10 German (1959), 235-240. (1959) MR0105319

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.