A-Browder-type theorems for direct sums of operators
Mohammed Berkani; Mustapha Sarih; Hassan Zariouh
Mathematica Bohemica (2016)
- Volume: 141, Issue: 1, page 99-108
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBerkani, Mohammed, Sarih, Mustapha, and Zariouh, Hassan. "A-Browder-type theorems for direct sums of operators." Mathematica Bohemica 141.1 (2016): 99-108. <http://eudml.org/doc/276812>.
@article{Berkani2016,
abstract = {We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties $(\rm SBaw)$, $(\rm SBab)$, $(\rm SBw)$ and $(\rm SBb)$ are not preserved under direct sums of operators. However, we prove that if $S$ and $T$ are bounded linear operators acting on Banach spaces and having the property $(\rm SBab)$, then $S\oplus T$ has the property $(\rm SBab)$ if and only if $\sigma _\{\rm SBF_+^-\}(S\oplus T)=\sigma _\{\rm SBF_+^-\}(S)\cup \sigma _\{\rm SBF_+^-\}(T)$, where $\sigma _\{\rm SBF_\{+\}^\{-\}\}(T)$ is the upper semi-B-Weyl spectrum of $T$. We obtain analogous preservation results for the properties $(\rm SBaw)$, $(\rm SBb)$ and $(\rm SBw)$ with extra assumptions.},
author = {Berkani, Mohammed, Sarih, Mustapha, Zariouh, Hassan},
journal = {Mathematica Bohemica},
keywords = {property $(\rm SBaw)$; property $(\rm SBab)$; upper semi-B-Weyl spectrum; direct sum},
language = {eng},
number = {1},
pages = {99-108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A-Browder-type theorems for direct sums of operators},
url = {http://eudml.org/doc/276812},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Berkani, Mohammed
AU - Sarih, Mustapha
AU - Zariouh, Hassan
TI - A-Browder-type theorems for direct sums of operators
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 1
SP - 99
EP - 108
AB - We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties $(\rm SBaw)$, $(\rm SBab)$, $(\rm SBw)$ and $(\rm SBb)$ are not preserved under direct sums of operators. However, we prove that if $S$ and $T$ are bounded linear operators acting on Banach spaces and having the property $(\rm SBab)$, then $S\oplus T$ has the property $(\rm SBab)$ if and only if $\sigma _{\rm SBF_+^-}(S\oplus T)=\sigma _{\rm SBF_+^-}(S)\cup \sigma _{\rm SBF_+^-}(T)$, where $\sigma _{\rm SBF_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of $T$. We obtain analogous preservation results for the properties $(\rm SBaw)$, $(\rm SBb)$ and $(\rm SBw)$ with extra assumptions.
LA - eng
KW - property $(\rm SBaw)$; property $(\rm SBab)$; upper semi-B-Weyl spectrum; direct sum
UR - http://eudml.org/doc/276812
ER -
References
top- Aiena, P., Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht (2004). (2004) Zbl1077.47001MR2070395
- Aluthge, A., On -hyponormal operators for , Integral Equations Oper. Theory 13 (1990), 307-315. (1990) Zbl0718.47015MR1047771
- Berkani, M., 10.1007/BF01236475, Integral Equations Oper. Theory 34 (1999), 244-249. (1999) Zbl0939.47010MR1694711DOI10.1007/BF01236475
- Berkani, M., Arroud, A., 10.1017/S144678870000896X, J. Aust. Math. Soc. 76 (2004), 291-302. (2004) Zbl1061.47021MR2041251DOI10.1017/S144678870000896X
- Berkani, M., Castro, N., Djordjevi{ć}, S. V., Single valued extension property and generalized Weyl's theorem, Math. Bohem. 131 (2006), 29-38. (2006) Zbl1114.47015MR2211001
- Berkani, M., Kachad, M., Zariouh, H., Extended Weyl-type theorems for direct sums, Demonstr. Math. (electronic only) 47 (2014), 411-422. (2014) Zbl1318.47019MR3217737
- Berkani, M., Kachad, M., Zariouh, H., Zguitti, H., 10.5644/SJM.09.2.11, Sarajevo J. Math. 9 (2013), 271-281. (2013) MR3146195DOI10.5644/SJM.09.2.11
- Berkani, M., Koliha, J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. 69 (2003), 359-376. (2003) Zbl1050.47014MR1991673
- Berkani, M., Sarih, M., 10.1017/S0017089501030075, Glasg. Math. J. 43 (2001), 457-465. (2001) Zbl0995.47008MR1878588DOI10.1017/S0017089501030075
- Berkani, M., Zariouh, H., 10.4134/BKMS.2012.49.5.1027, Bull. Korean Math. Soc. 49 (2012), 1027-1040. (2012) Zbl1263.47016MR3012970DOI10.4134/BKMS.2012.49.5.1027
- Conway, J. B., The Theory of Subnormal Operators, Mathematical Surveys and Monographs 36 American Mathematical Society, Providence (1991). (1991) Zbl0743.47012MR1112128
- Djordjevi{ć}, S. V., Han, Y. M., 10.1090/S0002-9939-02-06808-9, Proc. Am. Math. Soc. 131 (2003), 2543-2547. (2003) Zbl1041.47006MR1974653DOI10.1090/S0002-9939-02-06808-9
- Duggal, B. P., Kubrusly, C. S., Weyl's theorem for direct sums, Stud. Sci. Math. Hung. 44 (2007), 275-290. (2007) Zbl1164.47019MR2325524
- Heuser, H. G., Functional Analysis, John Wiley Chichester (1982). (1982) Zbl0465.47001MR0640429
- Laursen, K. B., Neumann, M. M., An Introduction to Local Spectral Theory, London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000). (2000) Zbl0957.47004MR1747914
- Lee, W. Y., 10.1090/S0002-9939-00-05846-9, Proc. Am. Math. Soc. 129 (2001), 131-138. (2001) Zbl0965.47011MR1784020DOI10.1090/S0002-9939-00-05846-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.