A-Browder-type theorems for direct sums of operators

Mohammed Berkani; Mustapha Sarih; Hassan Zariouh

Mathematica Bohemica (2016)

  • Volume: 141, Issue: 1, page 99-108
  • ISSN: 0862-7959

Abstract

top
We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties ( SBaw ) , ( SBab ) , ( SBw ) and ( SBb ) are not preserved under direct sums of operators. However, we prove that if S and T are bounded linear operators acting on Banach spaces and having the property ( SBab ) , then S T has the property ( SBab ) if and only if σ SBF + - ( S T ) = σ SBF + - ( S ) σ SBF + - ( T ) , where σ SBF + - ( T ) is the upper semi-B-Weyl spectrum of T . We obtain analogous preservation results for the properties ( SBaw ) , ( SBb ) and ( SBw ) with extra assumptions.

How to cite

top

Berkani, Mohammed, Sarih, Mustapha, and Zariouh, Hassan. "A-Browder-type theorems for direct sums of operators." Mathematica Bohemica 141.1 (2016): 99-108. <http://eudml.org/doc/276812>.

@article{Berkani2016,
abstract = {We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties $(\rm SBaw)$, $(\rm SBab)$, $(\rm SBw)$ and $(\rm SBb)$ are not preserved under direct sums of operators. However, we prove that if $S$ and $T$ are bounded linear operators acting on Banach spaces and having the property $(\rm SBab)$, then $S\oplus T$ has the property $(\rm SBab)$ if and only if $\sigma _\{\rm SBF_+^-\}(S\oplus T)=\sigma _\{\rm SBF_+^-\}(S)\cup \sigma _\{\rm SBF_+^-\}(T)$, where $\sigma _\{\rm SBF_\{+\}^\{-\}\}(T)$ is the upper semi-B-Weyl spectrum of $T$. We obtain analogous preservation results for the properties $(\rm SBaw)$, $(\rm SBb)$ and $(\rm SBw)$ with extra assumptions.},
author = {Berkani, Mohammed, Sarih, Mustapha, Zariouh, Hassan},
journal = {Mathematica Bohemica},
keywords = {property $(\rm SBaw)$; property $(\rm SBab)$; upper semi-B-Weyl spectrum; direct sum},
language = {eng},
number = {1},
pages = {99-108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A-Browder-type theorems for direct sums of operators},
url = {http://eudml.org/doc/276812},
volume = {141},
year = {2016},
}

TY - JOUR
AU - Berkani, Mohammed
AU - Sarih, Mustapha
AU - Zariouh, Hassan
TI - A-Browder-type theorems for direct sums of operators
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 1
SP - 99
EP - 108
AB - We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties $(\rm SBaw)$, $(\rm SBab)$, $(\rm SBw)$ and $(\rm SBb)$ are not preserved under direct sums of operators. However, we prove that if $S$ and $T$ are bounded linear operators acting on Banach spaces and having the property $(\rm SBab)$, then $S\oplus T$ has the property $(\rm SBab)$ if and only if $\sigma _{\rm SBF_+^-}(S\oplus T)=\sigma _{\rm SBF_+^-}(S)\cup \sigma _{\rm SBF_+^-}(T)$, where $\sigma _{\rm SBF_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of $T$. We obtain analogous preservation results for the properties $(\rm SBaw)$, $(\rm SBb)$ and $(\rm SBw)$ with extra assumptions.
LA - eng
KW - property $(\rm SBaw)$; property $(\rm SBab)$; upper semi-B-Weyl spectrum; direct sum
UR - http://eudml.org/doc/276812
ER -

References

top
  1. Aiena, P., Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht (2004). (2004) Zbl1077.47001MR2070395
  2. Aluthge, A., On p -hyponormal operators for 0 < p < 1 , Integral Equations Oper. Theory 13 (1990), 307-315. (1990) Zbl0718.47015MR1047771
  3. Berkani, M., 10.1007/BF01236475, Integral Equations Oper. Theory 34 (1999), 244-249. (1999) Zbl0939.47010MR1694711DOI10.1007/BF01236475
  4. Berkani, M., Arroud, A., 10.1017/S144678870000896X, J. Aust. Math. Soc. 76 (2004), 291-302. (2004) Zbl1061.47021MR2041251DOI10.1017/S144678870000896X
  5. Berkani, M., Castro, N., Djordjevi{ć}, S. V., Single valued extension property and generalized Weyl's theorem, Math. Bohem. 131 (2006), 29-38. (2006) Zbl1114.47015MR2211001
  6. Berkani, M., Kachad, M., Zariouh, H., Extended Weyl-type theorems for direct sums, Demonstr. Math. (electronic only) 47 (2014), 411-422. (2014) Zbl1318.47019MR3217737
  7. Berkani, M., Kachad, M., Zariouh, H., Zguitti, H., 10.5644/SJM.09.2.11, Sarajevo J. Math. 9 (2013), 271-281. (2013) MR3146195DOI10.5644/SJM.09.2.11
  8. Berkani, M., Koliha, J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. 69 (2003), 359-376. (2003) Zbl1050.47014MR1991673
  9. Berkani, M., Sarih, M., 10.1017/S0017089501030075, Glasg. Math. J. 43 (2001), 457-465. (2001) Zbl0995.47008MR1878588DOI10.1017/S0017089501030075
  10. Berkani, M., Zariouh, H., 10.4134/BKMS.2012.49.5.1027, Bull. Korean Math. Soc. 49 (2012), 1027-1040. (2012) Zbl1263.47016MR3012970DOI10.4134/BKMS.2012.49.5.1027
  11. Conway, J. B., The Theory of Subnormal Operators, Mathematical Surveys and Monographs 36 American Mathematical Society, Providence (1991). (1991) Zbl0743.47012MR1112128
  12. Djordjevi{ć}, S. V., Han, Y. M., 10.1090/S0002-9939-02-06808-9, Proc. Am. Math. Soc. 131 (2003), 2543-2547. (2003) Zbl1041.47006MR1974653DOI10.1090/S0002-9939-02-06808-9
  13. Duggal, B. P., Kubrusly, C. S., Weyl's theorem for direct sums, Stud. Sci. Math. Hung. 44 (2007), 275-290. (2007) Zbl1164.47019MR2325524
  14. Heuser, H. G., Functional Analysis, John Wiley Chichester (1982). (1982) Zbl0465.47001MR0640429
  15. Laursen, K. B., Neumann, M. M., An Introduction to Local Spectral Theory, London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000). (2000) Zbl0957.47004MR1747914
  16. Lee, W. Y., 10.1090/S0002-9939-00-05846-9, Proc. Am. Math. Soc. 129 (2001), 131-138. (2001) Zbl0965.47011MR1784020DOI10.1090/S0002-9939-00-05846-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.