Solving multi-objective fuzzy matrix games via multi-objective linear programming approach

Abha Aggarwal; Imran Khan

Kybernetika (2016)

  • Volume: 52, Issue: 1, page 153-168
  • ISSN: 0023-5954

Abstract

top
A class of multi-objective fuzzy matrix games is studied and it is shown that solving such a game is equivalent to solving a pair of multi-objective linear programming problems. This work generalizes an earlier study of Fernandez et al. [7] from crisp scenario to fuzzy scenario on the lines of Bector et al. [4]. Further certain difficulties with similar studies reported in the literature are also discussed.

How to cite

top

Aggarwal, Abha, and Khan, Imran. "Solving multi-objective fuzzy matrix games via multi-objective linear programming approach." Kybernetika 52.1 (2016): 153-168. <http://eudml.org/doc/276813>.

@article{Aggarwal2016,
abstract = {A class of multi-objective fuzzy matrix games is studied and it is shown that solving such a game is equivalent to solving a pair of multi-objective linear programming problems. This work generalizes an earlier study of Fernandez et al. [7] from crisp scenario to fuzzy scenario on the lines of Bector et al. [4]. Further certain difficulties with similar studies reported in the literature are also discussed.},
author = {Aggarwal, Abha, Khan, Imran},
journal = {Kybernetika},
keywords = {multi-objective game; Pareto-optimal security strategies; security level; multi-objective linear programming},
language = {eng},
number = {1},
pages = {153-168},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solving multi-objective fuzzy matrix games via multi-objective linear programming approach},
url = {http://eudml.org/doc/276813},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Aggarwal, Abha
AU - Khan, Imran
TI - Solving multi-objective fuzzy matrix games via multi-objective linear programming approach
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 1
SP - 153
EP - 168
AB - A class of multi-objective fuzzy matrix games is studied and it is shown that solving such a game is equivalent to solving a pair of multi-objective linear programming problems. This work generalizes an earlier study of Fernandez et al. [7] from crisp scenario to fuzzy scenario on the lines of Bector et al. [4]. Further certain difficulties with similar studies reported in the literature are also discussed.
LA - eng
KW - multi-objective game; Pareto-optimal security strategies; security level; multi-objective linear programming
UR - http://eudml.org/doc/276813
ER -

References

top
  1. Bellman, R. E., Zadeh, L. A., 10.1287/mnsc.17.4.b141, Management Sci. 17 (1970), 141-164. Zbl0224.90032MR0301613DOI10.1287/mnsc.17.4.b141
  2. Blackwell, D., 10.2140/pjm.1956.6.1, Pacific J. Math. 6 (1956), 1-8. MR0081804DOI10.2140/pjm.1956.6.1
  3. Bector, C. R., Chandra, S., Vijay, V., 10.1023/b:fodm.0000036866.18909.f1, Fuzzy Optim. Decision Making 3 (2004), 263-277. MR2102800DOI10.1023/b:fodm.0000036866.18909.f1
  4. Bector, C. R., Chandra, S., 10.1007/3-540-32371-6, Springer-Verlag, Berlin 2005. Zbl1078.90071DOI10.1007/3-540-32371-6
  5. Cook, W. D., 10.1002/nav.3800230406, Naval Research Logistics Quarterly 23 (1976), 615-622. Zbl0371.90125MR0444058DOI10.1002/nav.3800230406
  6. Corley, S. C., 10.1007/bf00942194, J. Optim. Theory Appl. 47 (1985), 463-475. Zbl0556.90095MR0818874DOI10.1007/bf00942194
  7. Fernandez, F. R., Puerto, J., 10.1007/bf02192644, J. Optim. Theory Appl. 89 (1996), 115-127. Zbl0866.90139MR1382533DOI10.1007/bf02192644
  8. Ghose, D., Prasad, U. R., 10.1007/bf00939572, J. Optim. Theory Appl. 63 (1989), 167-189. MR1026863DOI10.1007/bf00939572
  9. Gaskó, N., Suciu, M., Lung, R. I., Dumitrescu, D., Pareto-optimal Nash equilibrium detection using an evolutionary approach., Acta Univ. Sapientiae 4 (2012), 2, 237-246. 
  10. Mavrotas, G., Generation of Efficient Solutions in Multiobjective Mathematical Programming Problems Using GAMS. Effective Implementation of the ϵ -constraint Method., Technical Report: http://www.gams.com/modlib/adddocs/epscm.pdf (2007), 167-189. 
  11. Nishizaki, I., Sakawa, M., 10.1007/978-3-7908-1830-7, Kluwer Academic Publishers 2003. Zbl0973.91001DOI10.1007/978-3-7908-1830-7
  12. Sakawa, M., Nishizaki, I., 10.1016/0165-0114(94)90208-9, Fuzzy Sets and Systems 67 (1994), 53-69. MR1300301DOI10.1016/0165-0114(94)90208-9
  13. Steuer, R. E., Multiple Criteria Optimization: Theory, Computation and Application., John Wiley, New York 1986. Zbl0742.90068MR0836977
  14. Shapely, L. S., 10.1002/nav.3800060107, Naval Research Logistics Quarterly 6 (1959), 57-61. MR0109748DOI10.1002/nav.3800060107
  15. Vijay, V., Mehra, A., Chandra, S., Bector, C. R., 10.1007/s10700-007-9015-9, Fuzzy Optim. Decision Making 6 (2007), 299-314. Zbl1151.91319MR2365211DOI10.1007/s10700-007-9015-9
  16. Zeleny, M., 10.1007/bf01769266, Int. J. Game Theory 4 (1975), 179-191. MR0401181DOI10.1007/bf01769266
  17. Zimmermann, H. J., 10.1016/0165-0114(78)90031-3, Fuzzy Sets and Systems1 (1978), 45-55. Zbl0548.90076MR0496734DOI10.1016/0165-0114(78)90031-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.