On Henstock-Kurzweil method to Stratonovich integral
Mathematica Bohemica (2016)
- Volume: 141, Issue: 2, page 129-142
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topYang, Haifeng, and Toh, Tin Lam. "On Henstock-Kurzweil method to Stratonovich integral." Mathematica Bohemica 141.2 (2016): 129-142. <http://eudml.org/doc/276987>.
@article{Yang2016,
abstract = {We use the general Riemann approach to define the Stratonovich integral with respect to Brownian motion. Our new definition of Stratonovich integral encompass the classical Stratonovich integral and more importantly, satisfies the ideal Itô formula without the “tail” term, that is, \[ f(W\_\{t\})= f(W\_\{0\})+\int \_\{0\}^\{t\}f^\{\prime \}(W\_\{s\})\circ \{\rm d\}W\_\{s\}. \]
Further, the condition on the integrands in this paper is weaker than the classical one.},
author = {Yang, Haifeng, Toh, Tin Lam},
journal = {Mathematica Bohemica},
keywords = {Itô formula; Henstock-Kurzweil approach; Stratonovich integral},
language = {eng},
number = {2},
pages = {129-142},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Henstock-Kurzweil method to Stratonovich integral},
url = {http://eudml.org/doc/276987},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Yang, Haifeng
AU - Toh, Tin Lam
TI - On Henstock-Kurzweil method to Stratonovich integral
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 129
EP - 142
AB - We use the general Riemann approach to define the Stratonovich integral with respect to Brownian motion. Our new definition of Stratonovich integral encompass the classical Stratonovich integral and more importantly, satisfies the ideal Itô formula without the “tail” term, that is, \[ f(W_{t})= f(W_{0})+\int _{0}^{t}f^{\prime }(W_{s})\circ {\rm d}W_{s}. \]
Further, the condition on the integrands in this paper is weaker than the classical one.
LA - eng
KW - Itô formula; Henstock-Kurzweil approach; Stratonovich integral
UR - http://eudml.org/doc/276987
ER -
References
top- Chew, T.-S., Tay, J.-Y., Toh, T.-L., 10.14321/realanalexch.27.2.0495, Real Anal. Exch. 27 (2002), 495-514. (2002) Zbl1067.60025MR1922665DOI10.14321/realanalexch.27.2.0495
- Durrett, R., Probability: Theory and Examples, Cambridge University Press, Cambridge (2010). (2010) Zbl1202.60001MR2722836
- Gradinaru, M., Nourdin, I., Russo, F., Vallois, P., 10.1016/j.anihpb.2004.06.002, Ann. Inst. Henri Poincaré, Probab. Stat. 41 (2005), 781-806. (2005) Zbl1083.60045MR2144234DOI10.1016/j.anihpb.2004.06.002
- Karatzas, I., Shreve, S. E., Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics 113 Springer, New York (1991). (1991) Zbl0734.60060MR1121940
- Kurzweil, J., Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces, Series in Real Analysis 7 World Scientific, Singapore (2000). (2000) Zbl0954.28001MR1763305
- Lee, P. Y., Lanzhou Lectures on Henstock Integration, Series in Real Analysis 2 World Scientific, London (1989). (1989) Zbl0699.26004MR1050957
- Lee, T. W., 10.1017/S144678870001692X, J. Aust. Math. Soc., Ser. A 21 (1976), 64-71. (1976) Zbl0314.28009MR0435334DOI10.1017/S144678870001692X
- Loo, K. P., The Non-Uniform Riemann Approach to Anticipating Stochastic Integrals. Ph.D thesis, National University of Singapore Singapore (2002/2003). (2002) MR2061311
- McShane, E. J., Stochastic Calculus and Stochastic Models, Probability and Mathematical Statistics 25 Academic Press, New York (1974). (1974) Zbl0292.60090MR0443084
- Nourdin, I., Réveillac, A., Swanson, J., 10.1214/EJP.v15-843, Electron. J. Probab. (electronic only) 15 (2010), Article No. 70, 2117-2162. (2010) Zbl1225.60089MR2745728DOI10.1214/EJP.v15-843
- Øksendal, B., Stochastic Differential Equations. An Introduction with Applications, Universitext Springer, Berlin (2003). (2003) Zbl1025.60026MR2001996
- Protter, P. E., Stochastic Integration and Differential Equations, Stochastic Modelling and Applied Probability 21 Springer, Berlin (2004). (2004) Zbl1041.60005MR2020294
- Protter, P., 10.1214/aop/1176995088, Ann. Probab. 7 (1979), 276-289. (1979) Zbl0404.60062MR0525054DOI10.1214/aop/1176995088
- Toh, T.-L., Chew, T.-S., 10.1007/s10587-005-0052-7, Czech. Math. J. 55 (2005), 653-663. (2005) Zbl1081.26005MR2153089DOI10.1007/s10587-005-0052-7
- Toh, T.-L., Chew, T.-S., 10.1016/S0022-247X(03)00059-3, J. Math. Anal. Appl. 280 (2003), 133-147. (2003) Zbl1022.60055MR1972197DOI10.1016/S0022-247X(03)00059-3
- Toh, T.-L., Chew, T.-S., A variational approach to Itô's integral, Trends in Probability and Related Analysis. Proc. Symp. Analysis and Probability (SAP'98), Taipei, Taiwan, 1998 World Scientific Publishing Singapore N. Kono et al. (1999), 291-299. (1999) Zbl0981.60054MR1819215
- Xu, J., Lee, P. Y., Stochastic integrals of Itô and Henstock, Real Anal. Exch. 18 (1993), 352-366. (1993) Zbl0806.28009MR1228401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.