Henstock-Kurzweil integral on BV sets

Jan Malý; Washek Frank Pfeffer

Mathematica Bohemica (2016)

  • Volume: 141, Issue: 2, page 217-237
  • ISSN: 0862-7959

Abstract

top
The generalized Riemann integral of Pfeffer (1991) is defined on all bounded BV subsets of n , but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of σ -finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of BV sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation of improper integrals. Its definition in coincides with the Henstock-Kurzweil definition of the Denjoy-Perron integral.

How to cite

top

Malý, Jan, and Pfeffer, Washek Frank. "Henstock-Kurzweil integral on ${\rm BV}$ sets." Mathematica Bohemica 141.2 (2016): 217-237. <http://eudml.org/doc/276988>.

@article{Malý2016,
abstract = {The generalized Riemann integral of Pfeffer (1991) is defined on all bounded $\rm BV$ subsets of $\mathbb \{R\}^n$, but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of $\sigma $-finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of $\rm BV$ sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation of improper integrals. Its definition in $\mathbb \{R\}$ coincides with the Henstock-Kurzweil definition of the Denjoy-Perron integral.},
author = {Malý, Jan, Pfeffer, Washek Frank},
journal = {Mathematica Bohemica},
keywords = {Henstock-Kurzweil integral; charge; $\rm BV$ set},
language = {eng},
number = {2},
pages = {217-237},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Henstock-Kurzweil integral on $\{\rm BV\}$ sets},
url = {http://eudml.org/doc/276988},
volume = {141},
year = {2016},
}

TY - JOUR
AU - Malý, Jan
AU - Pfeffer, Washek Frank
TI - Henstock-Kurzweil integral on ${\rm BV}$ sets
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 217
EP - 237
AB - The generalized Riemann integral of Pfeffer (1991) is defined on all bounded $\rm BV$ subsets of $\mathbb {R}^n$, but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of $\sigma $-finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of $\rm BV$ sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation of improper integrals. Its definition in $\mathbb {R}$ coincides with the Henstock-Kurzweil definition of the Denjoy-Perron integral.
LA - eng
KW - Henstock-Kurzweil integral; charge; $\rm BV$ set
UR - http://eudml.org/doc/276988
ER -

References

top
  1. Denjoy, A., Une extension de l'intégrale de M. Lebesgue, C. R. Acad. Sci., Paris 154 (1912), 859-862 French. (1912) 
  2. Pauw, T. De, Pfeffer, W.F., 10.1002/cpa.20204, Commun. Pure Appl. Math. 61 (2008), 230-260. (2008) MR2368375DOI10.1002/cpa.20204
  3. Gordon, R.A., 10.1090/gsm/004/09, Graduate Studies in Mathematics 4 American Mathematical Society, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004/09
  4. Henstock, R., 10.4153/CJM-1968-010-5, Can. J. Math. 20 (1968), 79-87. (1968) Zbl0171.01804MR0219675DOI10.4153/CJM-1968-010-5
  5. Henstock, R., 10.1112/plms/s3-11.1.402, Proc. Lond. Math. Soc. (3) 11 (1961), 402-418. (1961) Zbl0099.27402MR0132147DOI10.1112/plms/s3-11.1.402
  6. Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7(82) (1957), 418-449. (1957) Zbl0090.30002MR0111875
  7. Jarník, J., Kurzweil, J., A non absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czech. Math. J. 35(110) (1985), 116-139. (1985) Zbl0614.26007MR0779340
  8. Jarník, J., Kurzweil, J., A nonabsolutely convergent integral which admits C 1 -transfor-mations, Čas. Pěst. Mat. 109 (1984), 157-167. (1984) MR0744873
  9. Jarník, J., Kurzweil, J., Schwabik, Š., On Mawhin's approach to multiple nonabsolutely convergent integral, Čas. Pěst. Mat. 108 (1983), 356-380. (1983) Zbl0555.26004MR0727536
  10. Mawhin, J., Generalized multiple Perron integrals and the Green-{G}oursat theorem for differentiable vector fields, Czech. Math. J. 31(106) (1981), 614-632. (1981) Zbl0562.26004MR0631606
  11. Mawhin, J., Generalized Riemann integrals and the divergence theorem for differentiable vector fields, E. B. Christoffel. The Influence of His Work on Mathematics and the Physical Sciences. Int. Christoffel Symp. in Honour of Christoffel on the 150th Anniversary of his Birth, Aachen and Monschau, Germany, 1979 Birkhäuser, Basel (1981), 704-714 P. L. Butzer et al. (1981) Zbl0562.26003MR0661109
  12. Perron, O., Über den Integralbegriff, Heidelb. Ak. Sitzungsber. 14 Heidelberg German (1914). (1914) 
  13. Pfeffer, W.F., 10.1201/b11919-10, Pure and Applied Mathematics 303 CRC Press, Boca Raton (2012). (2012) Zbl1258.28002MR2963550DOI10.1201/b11919-10
  14. Pfeffer, W.F., Derivatives and primitives, Sci. Math. Jpn. 55 (2002), 399-425. (2002) Zbl1010.26012MR1887074
  15. Pfeffer, W.F., Derivation and Integration, Cambridge Tracts in Mathematics 140 Cambridge University Press, Cambridge (2001). (2001) Zbl0980.26008MR1816996
  16. Pfeffer, W.F., 10.1016/0001-8708(91)90063-D, Adv. Math. 87 (1991), 93-147. (1991) Zbl0732.26013MR1102966DOI10.1016/0001-8708(91)90063-D
  17. Pfeffer, W.F., 10.1017/S1446788700029293, J. Aust. Math. Soc., Ser. A 43 (1987), 143-170. (1987) Zbl0638.26011MR0896622DOI10.1017/S1446788700029293
  18. Pfeffer, W.F., A Riemann-type integral and the divergence theorem, C.R. Acad. Sci., Paris, (1) 299 (1984), 299-301 French. (1984) Zbl0574.26009MR0761251

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.