Henstock-Kurzweil integral on sets
Jan Malý; Washek Frank Pfeffer
Mathematica Bohemica (2016)
- Volume: 141, Issue: 2, page 217-237
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMalý, Jan, and Pfeffer, Washek Frank. "Henstock-Kurzweil integral on ${\rm BV}$ sets." Mathematica Bohemica 141.2 (2016): 217-237. <http://eudml.org/doc/276988>.
@article{Malý2016,
abstract = {The generalized Riemann integral of Pfeffer (1991) is defined on all bounded $\rm BV$ subsets of $\mathbb \{R\}^n$, but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of $\sigma $-finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of $\rm BV$ sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation of improper integrals. Its definition in $\mathbb \{R\}$ coincides with the Henstock-Kurzweil definition of the Denjoy-Perron integral.},
author = {Malý, Jan, Pfeffer, Washek Frank},
journal = {Mathematica Bohemica},
keywords = {Henstock-Kurzweil integral; charge; $\rm BV$ set},
language = {eng},
number = {2},
pages = {217-237},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Henstock-Kurzweil integral on $\{\rm BV\}$ sets},
url = {http://eudml.org/doc/276988},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Malý, Jan
AU - Pfeffer, Washek Frank
TI - Henstock-Kurzweil integral on ${\rm BV}$ sets
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 217
EP - 237
AB - The generalized Riemann integral of Pfeffer (1991) is defined on all bounded $\rm BV$ subsets of $\mathbb {R}^n$, but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of $\sigma $-finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of $\rm BV$ sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation of improper integrals. Its definition in $\mathbb {R}$ coincides with the Henstock-Kurzweil definition of the Denjoy-Perron integral.
LA - eng
KW - Henstock-Kurzweil integral; charge; $\rm BV$ set
UR - http://eudml.org/doc/276988
ER -
References
top- Denjoy, A., Une extension de l'intégrale de M. Lebesgue, C. R. Acad. Sci., Paris 154 (1912), 859-862 French. (1912)
- Pauw, T. De, Pfeffer, W.F., 10.1002/cpa.20204, Commun. Pure Appl. Math. 61 (2008), 230-260. (2008) MR2368375DOI10.1002/cpa.20204
- Gordon, R.A., 10.1090/gsm/004/09, Graduate Studies in Mathematics 4 American Mathematical Society, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004/09
- Henstock, R., 10.4153/CJM-1968-010-5, Can. J. Math. 20 (1968), 79-87. (1968) Zbl0171.01804MR0219675DOI10.4153/CJM-1968-010-5
- Henstock, R., 10.1112/plms/s3-11.1.402, Proc. Lond. Math. Soc. (3) 11 (1961), 402-418. (1961) Zbl0099.27402MR0132147DOI10.1112/plms/s3-11.1.402
- Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7(82) (1957), 418-449. (1957) Zbl0090.30002MR0111875
- Jarník, J., Kurzweil, J., A non absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czech. Math. J. 35(110) (1985), 116-139. (1985) Zbl0614.26007MR0779340
- Jarník, J., Kurzweil, J., A nonabsolutely convergent integral which admits -transfor-mations, Čas. Pěst. Mat. 109 (1984), 157-167. (1984) MR0744873
- Jarník, J., Kurzweil, J., Schwabik, Š., On Mawhin's approach to multiple nonabsolutely convergent integral, Čas. Pěst. Mat. 108 (1983), 356-380. (1983) Zbl0555.26004MR0727536
- Mawhin, J., Generalized multiple Perron integrals and the Green-{G}oursat theorem for differentiable vector fields, Czech. Math. J. 31(106) (1981), 614-632. (1981) Zbl0562.26004MR0631606
- Mawhin, J., Generalized Riemann integrals and the divergence theorem for differentiable vector fields, E. B. Christoffel. The Influence of His Work on Mathematics and the Physical Sciences. Int. Christoffel Symp. in Honour of Christoffel on the 150th Anniversary of his Birth, Aachen and Monschau, Germany, 1979 Birkhäuser, Basel (1981), 704-714 P. L. Butzer et al. (1981) Zbl0562.26003MR0661109
- Perron, O., Über den Integralbegriff, Heidelb. Ak. Sitzungsber. 14 Heidelberg German (1914). (1914)
- Pfeffer, W.F., 10.1201/b11919-10, Pure and Applied Mathematics 303 CRC Press, Boca Raton (2012). (2012) Zbl1258.28002MR2963550DOI10.1201/b11919-10
- Pfeffer, W.F., Derivatives and primitives, Sci. Math. Jpn. 55 (2002), 399-425. (2002) Zbl1010.26012MR1887074
- Pfeffer, W.F., Derivation and Integration, Cambridge Tracts in Mathematics 140 Cambridge University Press, Cambridge (2001). (2001) Zbl0980.26008MR1816996
- Pfeffer, W.F., 10.1016/0001-8708(91)90063-D, Adv. Math. 87 (1991), 93-147. (1991) Zbl0732.26013MR1102966DOI10.1016/0001-8708(91)90063-D
- Pfeffer, W.F., 10.1017/S1446788700029293, J. Aust. Math. Soc., Ser. A 43 (1987), 143-170. (1987) Zbl0638.26011MR0896622DOI10.1017/S1446788700029293
- Pfeffer, W.F., A Riemann-type integral and the divergence theorem, C.R. Acad. Sci., Paris, (1) 299 (1984), 299-301 French. (1984) Zbl0574.26009MR0761251
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.