Displaying similar documents to “Henstock-Kurzweil integral on BV sets”

Variational Henstock integrability of Banach space valued functions

Luisa Di Piazza, Valeria Marraffa, Kazimierz Musiał (2016)

Mathematica Bohemica

Similarity:

We study the integrability of Banach space valued strongly measurable functions defined on [ 0 , 1 ] . In the case of functions f given by n = 1 x n χ E n , where x n are points of a Banach space and the sets E n are Lebesgue measurable and pairwise disjoint subsets of [ 0 , 1 ] , there are well known characterizations for Bochner and Pettis integrability of f . The function f is Bochner integrable if and only if the series n = 1 x n | E n | is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability...

Compact operators and integral equations in the ℋ𝒦 space

Varayu Boonpogkrong (2022)

Czechoslovak Mathematical Journal

Similarity:

The space ℋ𝒦 of Henstock-Kurzweil integrable functions on [ a , b ] is the uncountable union of Fréchet spaces ℋ𝒦 ( X ) . In this paper, on each Fréchet space ℋ𝒦 ( X ) , an F -norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the ℋ𝒦 ( X ) space. It is known that every control-convergent sequence in the ℋ𝒦 space always belongs to a ℋ𝒦 ( X ) space for some X . We illustrate how...

The topology of the space of ℋ𝒦 integrable functions in n

Varayu Boonpogkrong (2025)

Czechoslovak Mathematical Journal

Similarity:

It is known that there is no natural Banach norm on the space ℋ𝒦 of n -dimensional Henstock-Kurzweil integrable functions on [ a , b ] . We show that the ℋ𝒦 space is the uncountable union of Fréchet spaces ℋ𝒦 ( X ) . On each ℋ𝒦 ( X ) space, an F -norm · X is defined. A · X -convergent sequence is equivalent to a control-convergent sequence. Furthermore, an F -norm is also defined for a · X -continuous linear operator. Hence, many important results in functional analysis hold for the ℋ𝒦 ( X ) space. It is well-known that every...

Linear FDEs in the frame of generalized ODEs: variation-of-constants formula

Rodolfo Collegari, Márcia Federson, Miguel Frasson (2018)

Czechoslovak Mathematical Journal

Similarity:

We present a variation-of-constants formula for functional differential equations of the form y ˙ = ( t ) y t + f ( y t , t ) , y t 0 = ϕ , where is a bounded linear operator and ϕ is a regulated function. Unlike the result by G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the application t f ( y t , t ) is Kurzweil integrable with t in an interval of , for each regulated function y . This means that t f ( y t , t ) may admit not only many discontinuities, but it can also be highly oscillating and yet, we are...

On coincidence of Pettis and McShane integrability

Marián J. Fabián (2015)

Czechoslovak Mathematical Journal

Similarity:

R. Deville and J. Rodríguez proved that, for every Hilbert generated space X , every Pettis integrable function f : [ 0 , 1 ] X is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space X and a scalarly null (hence Pettis integrable) function from [ 0 , 1 ] into X , which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from [ 0 , 1 ] (mostly) into C ( K ) spaces. We focus in more detail on...

Some remarks on descriptive characterizations of the strong McShane integral

Sokol Bush Kaliaj (2019)

Mathematica Bohemica

Similarity:

We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function f : W X defined on a non-degenerate closed subinterval W of m in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure V F generated by the primitive F : W X of f , where W is the family of all closed non-degenerate subintervals of W .

On the regularity of the one-sided Hardy-Littlewood maximal functions

Feng Liu, Suzhen Mao (2017)

Czechoslovak Mathematical Journal

Similarity:

In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators + and - . More precisely, we prove that + and - map W 1 , p ( ) W 1 , p ( ) with 1 < p < , boundedly and continuously. In addition, we show that the discrete versions M + and M - map BV ( ) BV ( ) boundedly and map l 1 ( ) BV ( ) continuously. Specially, we obtain the sharp variation inequalities of M + and M - , that is, Var ( M + ( f ) ) Var ( f ) and Var ( M - ( f ) ) Var ( f ) if f BV ( ) , where Var ( f ) is the total variation of f on and BV ( ) is the set of all functions f : satisfying Var ( f ) < .

On boundary value problems for systems of nonlinear generalized ordinary differential equations

Malkhaz Ashordia (2017)

Czechoslovak Mathematical Journal

Similarity:

A general theorem (principle of a priori boundedness) on solvability of the boundary value problem d x = d A ( t ) · f ( t , x ) , h ( x ) = 0 is established, where f : [ a , b ] × n n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A : [ a , b ] n × n with bounded total variation components, and h : BV s ( [ a , b ] , n ) n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x ( t 1 ( x ) ) = ( x ) · x ( t 2 ( x ) ) + c 0 , where t i : BV s ( [ a , b ] , n ) [ a , b ] ( i = 1 , 2 ) and : BV s ( [ a , b ] , n ) n are continuous...

On the double Lusin condition and convergence theorem for Kurzweil-Henstock type integrals

Abraham Racca, Emmanuel Cabral (2016)

Mathematica Bohemica

Similarity:

Equiintegrability in a compact interval E may be defined as a uniform integrability property that involves both the integrand f n and the corresponding primitive F n . The pointwise convergence of the integrands f n to some f and the equiintegrability of the functions f n together imply that f is also integrable with primitive F and that the primitives F n converge uniformly to F . In this paper, another uniform integrability property called uniform double Lusin condition introduced in the papers...

A complete characterization of R-sets in the theory of differentiation of integrals

G. A. Karagulyan (2007)

Studia Mathematica

Similarity:

Let s be the family of open rectangles in the plane ℝ² with a side of angle s to the x-axis. We say that a set S of directions is an R-set if there exists a function f ∈ L¹(ℝ²) such that the basis s differentiates the integral of f if s ∉ S, and D ̅ s f ( x ) = l i m s u p d i a m ( R ) 0 , x R s | R | - 1 R f = almost everywhere if s ∈ S. If the condition D ̅ s f ( x ) = holds on a set of positive measure (instead of a.e.) we say that S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a G δ (resp. a G δ σ ).

Marcinkiewicz integrals on product spaces

H. Al-Qassem, A. Al-Salman, L. C. Cheng, Y. Pan (2005)

Studia Mathematica

Similarity:

We prove the L p boundedness of the Marcinkiewicz integral operators μ Ω on n × × n k under the condition that Ω L ( l o g L ) k / 2 ( n - 1 × × n k - 1 ) . The exponent k/2 is the best possible. This answers an open question posed by Y. Ding.