Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in N

Caisheng Chen; Hongxue Song

Applications of Mathematics (2016)

  • Volume: 61, Issue: 3, page 317-337
  • ISSN: 0862-7940

Abstract

top
In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation - Δ N u + b | u | N - 2 u - Δ N ( u 2 ) u = h ( u ) , x N , where Δ N is the N -Laplacian operator, h ( u ) is continuous and behaves as exp ( α | u | N / ( N - 1 ) ) when | u | . Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution u ( x ) W 1 , N ( N ) with u ( x ) 0 as | x | is established.

How to cite

top

Chen, Caisheng, and Song, Hongxue. "Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$." Applications of Mathematics 61.3 (2016): 317-337. <http://eudml.org/doc/276992>.

@article{Chen2016,
abstract = {In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation \[ -\Delta \_Nu+b|u|^\{N-2\}u-\Delta \_N(u^2)u=h(u), \quad x\in \mathbb \{R\}^N, \] where $\Delta _N$ is the $N$-Laplacian operator, $h(u)$ is continuous and behaves as $\exp (\alpha |u|^\{\{N\}/\{(N-1)\}\})$ when $|u|\rightarrow \infty $. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution $u(x)\in W^\{1,N\}(\mathbb \{R\}^N)$ with $u(x)\rightarrow 0$ as $|x|\rightarrow \infty $ is established.},
author = {Chen, Caisheng, Song, Hongxue},
journal = {Applications of Mathematics},
keywords = {$N$-Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold; -Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold},
language = {eng},
number = {3},
pages = {317-337},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/276992},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Chen, Caisheng
AU - Song, Hongxue
TI - Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 317
EP - 337
AB - In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation \[ -\Delta _Nu+b|u|^{N-2}u-\Delta _N(u^2)u=h(u), \quad x\in \mathbb {R}^N, \] where $\Delta _N$ is the $N$-Laplacian operator, $h(u)$ is continuous and behaves as $\exp (\alpha |u|^{{N}/{(N-1)}})$ when $|u|\rightarrow \infty $. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution $u(x)\in W^{1,N}(\mathbb {R}^N)$ with $u(x)\rightarrow 0$ as $|x|\rightarrow \infty $ is established.
LA - eng
KW - $N$-Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold; -Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold
UR - http://eudml.org/doc/276992
ER -

References

top
  1. Adachi, S., Tanaka, K., 10.1090/S0002-9939-99-05180-1, Proc. Am. Math. Soc. 128 (2000), 2051-2057. (2000) MR1646323DOI10.1090/S0002-9939-99-05180-1
  2. Badiale, M., Serra, E., Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext Springer, London (2011). (2011) Zbl1214.35025MR2722059
  3. Berestycki, H., Lions, P.-L., 10.1007/BF00250555, Arch. Ration. Mech. Anal. 82 (1983), 313-345. (1983) Zbl0533.35029MR0695535DOI10.1007/BF00250555
  4. Brézis, H., Lieb, E., 10.2307/2044999, Proc. Am. Math. Soc. 88 (1983), 486-490. (1983) Zbl0526.46037MR0699419DOI10.2307/2044999
  5. Cazenave, T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003). (2003) Zbl1055.35003MR2002047
  6. Colin, M., Jeanjean, L., 10.1016/j.na.2003.09.008, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56 (2004), 213-226. (2004) Zbl1035.35038MR2029068DOI10.1016/j.na.2003.09.008
  7. Bouard, A. de, Hayashi, N., Saut, J.-C., 10.1007/s002200050191, Commun. Math. Phys. 189 (1997), 73-105. (1997) Zbl0948.81025MR1478531DOI10.1007/s002200050191
  8. Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B., 10.1007/BF01205003, Calc. Var. Partial Differ. Equ. 3 (1995), 139-153. (1995) MR1386960DOI10.1007/BF01205003
  9. 'O, J. M. B. do, Semilinear Dirichlet problems for the N -Laplacian in N with nonlinearities in the critical growth range, Differ. Integral Equ. 9 (1996), 967-979. (1996) MR1392090
  10. 'O, J. M. B. do, 10.1155/S1085337597000419, Abstr. Appl. Anal. 2 (1997), 301-315. (1997) MR1704875DOI10.1155/S1085337597000419
  11. Ó, J. M. B. do, Medeiros, E., Severo, U., 10.1016/j.jde.2008.11.020, J. Differ. Equations 246 (2009), 1363-1386. (2009) MR2488689DOI10.1016/j.jde.2008.11.020
  12. Ó, J. M. B. do, Miyagaki, O. H., Soares, S. H. M., 10.1016/j.na.2006.10.018, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67 (2007), 3357-3372. (2007) MR2350892DOI10.1016/j.na.2006.10.018
  13. Ó, J. M. B. do, Severo, U., 10.1007/s00526-009-0286-6, Calc. Var. Partial Differ. Equ. 38 (2010), 275-315. (2010) MR2647122DOI10.1007/s00526-009-0286-6
  14. Edmunds, D. E., Ilyin, A. A., 10.1112/blms/27.1.71, Bull. London Math. Soc. 27 (1995), 71-74. (1995) Zbl0840.46018MR1331684DOI10.1112/blms/27.1.71
  15. Fang, X.-D., Szulkin, A., 10.1016/j.jde.2012.11.017, J. Differ. Equations 254 (2013), 2015-2032. (2013) Zbl1263.35113MR3003301DOI10.1016/j.jde.2012.11.017
  16. Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition, Classics in Mathematics Springer, Berlin (2001). (2001) MR1814364
  17. Hasse, R. W., 10.1007/BF01325508, Z. Phys., B 37 (1980), 83-87. (1980) MR0563644DOI10.1007/BF01325508
  18. Kurihara, S., 10.1143/JPSJ.50.3801, J. Phys. Soc. Japan 50 (1981), 3801-3805. (1981) MR0638806DOI10.1143/JPSJ.50.3801
  19. Laedke, E. W., Spatschek, K. H., Stenflo, L., 10.1063/1.525675, J. Math. Phys. 24 (1983), 2764-2769. (1983) Zbl0548.35101MR0727767DOI10.1063/1.525675
  20. Lieb, E. H., Loss, M., Analysis, Graduate Studies in Mathematics 14 American Mathematical Society, Providence (2001). (2001) Zbl0966.26002MR1817225
  21. Lions, P.-L., 10.1016/S0294-1449(16)30422-X, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 223-283. (1984) Zbl0704.49004MR0778974DOI10.1016/S0294-1449(16)30422-X
  22. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q., 10.1016/S0022-0396(02)00064-5, J. Differ. Equations 187 (2003), 473-493. (2003) Zbl1229.35268MR1949452DOI10.1016/S0022-0396(02)00064-5
  23. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q., 10.1081/PDE-120037335, Commun. Partial Differ. Equations 29 879-901 (2004). (2004) Zbl1140.35399MR2059151DOI10.1081/PDE-120037335
  24. Makhankov, V. G., Fedyanin, V. K., 10.1016/0370-1573(84)90106-6, Phys. Rep. 104 1-86 (1984). (1984) MR0740342DOI10.1016/0370-1573(84)90106-6
  25. Quispel, G. R. W., Capel, H. W., 10.1016/0378-4371(82)90104-2, Physica A 110 (1982), 41-80. (1982) MR0647411DOI10.1016/0378-4371(82)90104-2
  26. Ruiz, D., Siciliano, G., 10.1088/0951-7715/23/5/011, Nonlinearity 23 (2010), 1221-1233. (2010) Zbl1189.35316MR2630099DOI10.1088/0951-7715/23/5/011
  27. Serrin, J., 10.1007/BF02391014, Acta Math. 111 (1964), 247-302. (1964) Zbl0128.09101MR0170096DOI10.1007/BF02391014
  28. Severo, U., Existence of weak solutions for quasilinear elliptic equations involving the p -Laplacian, Electron. J. Differ. Equ. (electronic only) 2008 (2008), 16 pages. (2008) Zbl1173.35483MR2392960
  29. Wang, Y., Yang, J., Zhang, Y., 10.1016/j.na.2009.06.006, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 6157-6169. (2009) Zbl1180.35262MR2566522DOI10.1016/j.na.2009.06.006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.