Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in
Applications of Mathematics (2016)
- Volume: 61, Issue: 3, page 317-337
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topChen, Caisheng, and Song, Hongxue. "Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$." Applications of Mathematics 61.3 (2016): 317-337. <http://eudml.org/doc/276992>.
@article{Chen2016,
abstract = {In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation \[ -\Delta \_Nu+b|u|^\{N-2\}u-\Delta \_N(u^2)u=h(u), \quad x\in \mathbb \{R\}^N, \]
where $\Delta _N$ is the $N$-Laplacian operator, $h(u)$ is continuous and behaves as $\exp (\alpha |u|^\{\{N\}/\{(N-1)\}\})$ when $|u|\rightarrow \infty $. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution $u(x)\in W^\{1,N\}(\mathbb \{R\}^N)$ with $u(x)\rightarrow 0$ as $|x|\rightarrow \infty $ is established.},
author = {Chen, Caisheng, Song, Hongxue},
journal = {Applications of Mathematics},
keywords = {$N$-Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold; -Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold},
language = {eng},
number = {3},
pages = {317-337},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/276992},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Chen, Caisheng
AU - Song, Hongxue
TI - Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 317
EP - 337
AB - In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation \[ -\Delta _Nu+b|u|^{N-2}u-\Delta _N(u^2)u=h(u), \quad x\in \mathbb {R}^N, \]
where $\Delta _N$ is the $N$-Laplacian operator, $h(u)$ is continuous and behaves as $\exp (\alpha |u|^{{N}/{(N-1)}})$ when $|u|\rightarrow \infty $. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution $u(x)\in W^{1,N}(\mathbb {R}^N)$ with $u(x)\rightarrow 0$ as $|x|\rightarrow \infty $ is established.
LA - eng
KW - $N$-Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold; -Laplacian equation; critical exponential growth; Schwarz symmetrization; Nehari manifold
UR - http://eudml.org/doc/276992
ER -
References
top- Adachi, S., Tanaka, K., 10.1090/S0002-9939-99-05180-1, Proc. Am. Math. Soc. 128 (2000), 2051-2057. (2000) MR1646323DOI10.1090/S0002-9939-99-05180-1
- Badiale, M., Serra, E., Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext Springer, London (2011). (2011) Zbl1214.35025MR2722059
- Berestycki, H., Lions, P.-L., 10.1007/BF00250555, Arch. Ration. Mech. Anal. 82 (1983), 313-345. (1983) Zbl0533.35029MR0695535DOI10.1007/BF00250555
- Brézis, H., Lieb, E., 10.2307/2044999, Proc. Am. Math. Soc. 88 (1983), 486-490. (1983) Zbl0526.46037MR0699419DOI10.2307/2044999
- Cazenave, T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003). (2003) Zbl1055.35003MR2002047
- Colin, M., Jeanjean, L., 10.1016/j.na.2003.09.008, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56 (2004), 213-226. (2004) Zbl1035.35038MR2029068DOI10.1016/j.na.2003.09.008
- Bouard, A. de, Hayashi, N., Saut, J.-C., 10.1007/s002200050191, Commun. Math. Phys. 189 (1997), 73-105. (1997) Zbl0948.81025MR1478531DOI10.1007/s002200050191
- Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B., 10.1007/BF01205003, Calc. Var. Partial Differ. Equ. 3 (1995), 139-153. (1995) MR1386960DOI10.1007/BF01205003
- 'O, J. M. B. do, Semilinear Dirichlet problems for the -Laplacian in with nonlinearities in the critical growth range, Differ. Integral Equ. 9 (1996), 967-979. (1996) MR1392090
- 'O, J. M. B. do, 10.1155/S1085337597000419, Abstr. Appl. Anal. 2 (1997), 301-315. (1997) MR1704875DOI10.1155/S1085337597000419
- Ó, J. M. B. do, Medeiros, E., Severo, U., 10.1016/j.jde.2008.11.020, J. Differ. Equations 246 (2009), 1363-1386. (2009) MR2488689DOI10.1016/j.jde.2008.11.020
- Ó, J. M. B. do, Miyagaki, O. H., Soares, S. H. M., 10.1016/j.na.2006.10.018, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67 (2007), 3357-3372. (2007) MR2350892DOI10.1016/j.na.2006.10.018
- Ó, J. M. B. do, Severo, U., 10.1007/s00526-009-0286-6, Calc. Var. Partial Differ. Equ. 38 (2010), 275-315. (2010) MR2647122DOI10.1007/s00526-009-0286-6
- Edmunds, D. E., Ilyin, A. A., 10.1112/blms/27.1.71, Bull. London Math. Soc. 27 (1995), 71-74. (1995) Zbl0840.46018MR1331684DOI10.1112/blms/27.1.71
- Fang, X.-D., Szulkin, A., 10.1016/j.jde.2012.11.017, J. Differ. Equations 254 (2013), 2015-2032. (2013) Zbl1263.35113MR3003301DOI10.1016/j.jde.2012.11.017
- Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition, Classics in Mathematics Springer, Berlin (2001). (2001) MR1814364
- Hasse, R. W., 10.1007/BF01325508, Z. Phys., B 37 (1980), 83-87. (1980) MR0563644DOI10.1007/BF01325508
- Kurihara, S., 10.1143/JPSJ.50.3801, J. Phys. Soc. Japan 50 (1981), 3801-3805. (1981) MR0638806DOI10.1143/JPSJ.50.3801
- Laedke, E. W., Spatschek, K. H., Stenflo, L., 10.1063/1.525675, J. Math. Phys. 24 (1983), 2764-2769. (1983) Zbl0548.35101MR0727767DOI10.1063/1.525675
- Lieb, E. H., Loss, M., Analysis, Graduate Studies in Mathematics 14 American Mathematical Society, Providence (2001). (2001) Zbl0966.26002MR1817225
- Lions, P.-L., 10.1016/S0294-1449(16)30422-X, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 223-283. (1984) Zbl0704.49004MR0778974DOI10.1016/S0294-1449(16)30422-X
- Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q., 10.1016/S0022-0396(02)00064-5, J. Differ. Equations 187 (2003), 473-493. (2003) Zbl1229.35268MR1949452DOI10.1016/S0022-0396(02)00064-5
- Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q., 10.1081/PDE-120037335, Commun. Partial Differ. Equations 29 879-901 (2004). (2004) Zbl1140.35399MR2059151DOI10.1081/PDE-120037335
- Makhankov, V. G., Fedyanin, V. K., 10.1016/0370-1573(84)90106-6, Phys. Rep. 104 1-86 (1984). (1984) MR0740342DOI10.1016/0370-1573(84)90106-6
- Quispel, G. R. W., Capel, H. W., 10.1016/0378-4371(82)90104-2, Physica A 110 (1982), 41-80. (1982) MR0647411DOI10.1016/0378-4371(82)90104-2
- Ruiz, D., Siciliano, G., 10.1088/0951-7715/23/5/011, Nonlinearity 23 (2010), 1221-1233. (2010) Zbl1189.35316MR2630099DOI10.1088/0951-7715/23/5/011
- Serrin, J., 10.1007/BF02391014, Acta Math. 111 (1964), 247-302. (1964) Zbl0128.09101MR0170096DOI10.1007/BF02391014
- Severo, U., Existence of weak solutions for quasilinear elliptic equations involving the -Laplacian, Electron. J. Differ. Equ. (electronic only) 2008 (2008), 16 pages. (2008) Zbl1173.35483MR2392960
- Wang, Y., Yang, J., Zhang, Y., 10.1016/j.na.2009.06.006, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 6157-6169. (2009) Zbl1180.35262MR2566522DOI10.1016/j.na.2009.06.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.