# On a noncommutative Iwasawa main conjecture for varieties over finite fields

Journal of the European Mathematical Society (2014)

- Volume: 016, Issue: 2, page 289-325
- ISSN: 1435-9855

## Access Full Article

top## Abstract

top## How to cite

topWitte, Malte. "On a noncommutative Iwasawa main conjecture for varieties over finite fields." Journal of the European Mathematical Society 016.2 (2014): 289-325. <http://eudml.org/doc/277582>.

@article{Witte2014,

abstract = {We formulate and prove an analogue of the noncommutative Iwasawa main conjecture for $\ell $-adic Lie extensions of a separated scheme $X$ of finite type over a finite field of characteristic prime to $\ell $.},

author = {Witte, Malte},

journal = {Journal of the European Mathematical Society},

keywords = {Iwasawa theory; $L$-functions; special values; varieties; étale cohomology; finite fields; Iwasawa non commutative main conjecture; $\ell $-adic Lie extensions; separated scheme; Iwasawa non commutative main conjecture; -adic Lie extensions; separated scheme},

language = {eng},

number = {2},

pages = {289-325},

publisher = {European Mathematical Society Publishing House},

title = {On a noncommutative Iwasawa main conjecture for varieties over finite fields},

url = {http://eudml.org/doc/277582},

volume = {016},

year = {2014},

}

TY - JOUR

AU - Witte, Malte

TI - On a noncommutative Iwasawa main conjecture for varieties over finite fields

JO - Journal of the European Mathematical Society

PY - 2014

PB - European Mathematical Society Publishing House

VL - 016

IS - 2

SP - 289

EP - 325

AB - We formulate and prove an analogue of the noncommutative Iwasawa main conjecture for $\ell $-adic Lie extensions of a separated scheme $X$ of finite type over a finite field of characteristic prime to $\ell $.

LA - eng

KW - Iwasawa theory; $L$-functions; special values; varieties; étale cohomology; finite fields; Iwasawa non commutative main conjecture; $\ell $-adic Lie extensions; separated scheme; Iwasawa non commutative main conjecture; -adic Lie extensions; separated scheme

UR - http://eudml.org/doc/277582

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.