A Hardy type inequality for functions
Hernán Castro; Juan Dávila; Hui Wang
Journal of the European Mathematical Society (2013)
- Volume: 015, Issue: 1, page 145-155
- ISSN: 1435-9855
Access Full Article
topAbstract
topHow to cite
topCastro, Hernán, Dávila, Juan, and Wang, Hui. "A Hardy type inequality for $W^{m,1}_0(\Omega )$ functions." Journal of the European Mathematical Society 015.1 (2013): 145-155. <http://eudml.org/doc/277758>.
@article{Castro2013,
	abstract = {We consider functions $u\in W^\{m,1\}_0(\Omega )$, where $\Omega \subset \mathbb \{R\}^N$ is a smooth bounded domain, and $m\ge 2$ is an integer. For all $j\ge 0, 1\le k\le m-1$, such that $1\le j+k\le m$, we prove that $\frac\{\partial ^iu(x)\}\{d(x)^\{m-j-k\}\}\in W^\{k,1\}_0(\Omega )$ with $\left\Vert \partial ^k(\frac\{\partial ^iu(x)\}\{d(x)^\{m-j-k\}\})_\{L^1(\Omega )\} \le C\right\Vert  u \left\Vert _\{W^\{m,1\}(\Omega )\}\right.$, where $d$ is a smooth positive function which coincides with dist$(x,\partial \Omega )$ near $\partial \Omega $, and $\partial ^l$ denotes any partial differential operator of order $l$.},
	author = {Castro, Hernán, Dávila, Juan, Wang, Hui},
	journal = {Journal of the European Mathematical Society},
	keywords = {Hardy inequality; Sobolev spaces; Hardy's inequality; Sobolev spaces},
	language = {eng},
	number = {1},
	pages = {145-155},
	publisher = {European Mathematical Society Publishing House},
	title = {A Hardy type inequality for $W^\{m,1\}_0(\Omega )$ functions},
	url = {http://eudml.org/doc/277758},
	volume = {015},
	year = {2013},
}
TY  - JOUR
AU  - Castro, Hernán
AU  - Dávila, Juan
AU  - Wang, Hui
TI  - A Hardy type inequality for $W^{m,1}_0(\Omega )$ functions
JO  - Journal of the European Mathematical Society
PY  - 2013
PB  - European Mathematical Society Publishing House
VL  - 015
IS  - 1
SP  - 145
EP  - 155
AB  - We consider functions $u\in W^{m,1}_0(\Omega )$, where $\Omega \subset \mathbb {R}^N$ is a smooth bounded domain, and $m\ge 2$ is an integer. For all $j\ge 0, 1\le k\le m-1$, such that $1\le j+k\le m$, we prove that $\frac{\partial ^iu(x)}{d(x)^{m-j-k}}\in W^{k,1}_0(\Omega )$ with $\left\Vert \partial ^k(\frac{\partial ^iu(x)}{d(x)^{m-j-k}})_{L^1(\Omega )} \le C\right\Vert  u \left\Vert _{W^{m,1}(\Omega )}\right.$, where $d$ is a smooth positive function which coincides with dist$(x,\partial \Omega )$ near $\partial \Omega $, and $\partial ^l$ denotes any partial differential operator of order $l$.
LA  - eng
KW  - Hardy inequality; Sobolev spaces; Hardy's inequality; Sobolev spaces
UR  - http://eudml.org/doc/277758
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
