# Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces

Sergey I. Repin; Tatiana S. Samrowski; Stéfan A. Sauter

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

- Volume: 46, Issue: 6, page 1389-1405
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topRepin, Sergey I., Samrowski, Tatiana S., and Sauter, Stéfan A.. "Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces." ESAIM: Mathematical Modelling and Numerical Analysis 46.6 (2012): 1389-1405. <http://eudml.org/doc/277846>.

@article{Repin2012,

abstract = {We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of functional type. An efficient numerical strategy is based upon balancing the modeling and discretization errors, which provides an economical way of finding an approximate solution with an a priori given accuracy. Numerical tests demonstrate the reliability and efficiency of this combined modeling-discretization method.},

author = {Repin, Sergey I., Samrowski, Tatiana S., Sauter, Stéfan A.},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {A posteriori error estimate; complicated diffusion coefficient; defeaturing of models; combined modeling discretization adaptive strategy; interfaces; modeling error; discretization error; a posteriori estimates; linear diffusion equation; numerical test},

language = {eng},

month = {4},

number = {6},

pages = {1389-1405},

publisher = {EDP Sciences},

title = {Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces},

url = {http://eudml.org/doc/277846},

volume = {46},

year = {2012},

}

TY - JOUR

AU - Repin, Sergey I.

AU - Samrowski, Tatiana S.

AU - Sauter, Stéfan A.

TI - Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2012/4//

PB - EDP Sciences

VL - 46

IS - 6

SP - 1389

EP - 1405

AB - We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of functional type. An efficient numerical strategy is based upon balancing the modeling and discretization errors, which provides an economical way of finding an approximate solution with an a priori given accuracy. Numerical tests demonstrate the reliability and efficiency of this combined modeling-discretization method.

LA - eng

KW - A posteriori error estimate; complicated diffusion coefficient; defeaturing of models; combined modeling discretization adaptive strategy; interfaces; modeling error; discretization error; a posteriori estimates; linear diffusion equation; numerical test

UR - http://eudml.org/doc/277846

ER -

## References

top- M. Ainsworth, A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains. Numer. Math.80 (1998) 325–362.
- M. Ainsworth and A. Arnold, A reliable a posteriori error estimator for adaptive hierarchic modeling, in Adv. Adap. Comp. Meth. Mech., edited by P. Ladevéze and J.T. Oden (1998) 101–114.
- M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000).
- I. Babuška and W.C. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Math. Eng. 12 (1978) 1597–1615.
- I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.15 (1978) 736–754.
- I. Babuška and R. Rodríguez, The problem of the selection of an a posteriori error indicator based on smoothing techniques. Int. J. Numer. Methods Eng.36 (1993) 539–567.
- I. Babuška and C. Schwab, A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal.33 (1996) 221–246.
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Amsterdam, North-Holland (1978).
- D. Braess, Finite elements : Theory, Fast Solvers and Application in Solid Mechanics. Cambridge University Press (2007).
- D. Braess, An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo46 (2009) 149–155.
- D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements. Math. Comp.77 (2008) 651–672.
- C. Carstensen and S. Sauter, A posteriori error analysis for elliptic PDEs on domains with complicated structures. Numer. Math.96 (2004) 691–721.
- M. Chipot, Elliptic Equations : An Introductory Course. Birkhäuser Verlag AG (2009).
- Ph. Clément, Approximations by finite element functions using local regularization. RAIRO Anal. Numer.9 (1975) 77–84.
- W. Dörfler, M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Math. Comp.671361–1382 (1998).
- V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994).
- P. Jiranek, Z. Strakos and M. Vohralik, A posteriori error estimates including algebraic error : computable upper bounds and stopping criteria for iterative solvers, SIAM J. Sci. Comput.32 (2010) 1567–1590.
- P. Neittaanmäki and S.I. Repin, Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Elsevier, New York (2004).
- S. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauch. Semin. (POMI)243 (1997) 201–214.
- S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp.69 (2000) 481–500.
- S. Repin, Two-sided estimates of deviation from exact solutions of uniformly elliptic equations, Proc. of the St. Petersburg Mathematical Society IX, Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI 209 (2003) 143–171.
- S. Repin, A Posteriori Error Estimates For Partial Differential Equations. Walter de Gruyter, Berlin (2008).
- S. Repin and S. Sauter, Functional a posteriori estimates for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris343 (2006) 349–354.
- S. Repin and S. Sauter, Computable estimates of the modeling error related to Kirchhoff-Love plate model. Anal. Appl.8 (2010) 1–20.
- S. Repin and J. Valdman, Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math.16 (2008) 51–81.
- S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing70 (2003) 205–233.
- S. Repin, S. Sauter and A. Smolianski, Duality based a posteriori error estimator for the Dirichlet problem. Proc. Appl. Math. Mech.2 (2003) 513–514.
- S. Repin, S. Sauter and A. Smolianski, A posteriori estimation of dimension reduction errors for elliptic problems in thin domains. SIAM J. Numer. Anal.42 (2004) 1435–1451.
- S. Repin, S. Sauter and A. Smolianski, A posteriori control of dimension reduction errors on long domains. Proc. Appl. Math. Mech.4 (2004) 714–715.
- S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J. Comput. Appl. Math.164-165 (2004) 601–612.
- S. Repin, S. Sauter and A. Smolianski, Two-sided a posteriori error estimates for mixed formulations of elliptic problems. SIAM J. Numer. Anal.45 (2007) 928–945.
- C. Schwab, A posteriori modeling error estimation for hierarchic plate model. Numer. Math.74 (1996) 221–259.
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Amsterdam (1996).
- J. Valdman, Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method. Adv. Numer. Math., Advances Numer. Anal. (2009) 164519.
- M. Vogelius and I. Babuška, On a dimensional reduction method I. The optimal selection of basis functions. Math. Comput.37 (1981) 31–46.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.