Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces

Sergey I. Repin; Tatiana S. Samrowski; Stéfan A. Sauter

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

  • Volume: 46, Issue: 6, page 1389-1405
  • ISSN: 0764-583X

Abstract

top
We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of functional type. An efficient numerical strategy is based upon balancing the modeling and discretization errors, which provides an economical way of finding an approximate solution with an a priori given accuracy. Numerical tests demonstrate the reliability and efficiency of this combined modeling-discretization method.

How to cite

top

Repin, Sergey I., Samrowski, Tatiana S., and Sauter, Stéfan A.. "Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces." ESAIM: Mathematical Modelling and Numerical Analysis 46.6 (2012): 1389-1405. <http://eudml.org/doc/277846>.

@article{Repin2012,
abstract = {We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of functional type. An efficient numerical strategy is based upon balancing the modeling and discretization errors, which provides an economical way of finding an approximate solution with an a priori given accuracy. Numerical tests demonstrate the reliability and efficiency of this combined modeling-discretization method.},
author = {Repin, Sergey I., Samrowski, Tatiana S., Sauter, Stéfan A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {A posteriori error estimate; complicated diffusion coefficient; defeaturing of models; combined modeling discretization adaptive strategy; interfaces; modeling error; discretization error; a posteriori estimates; linear diffusion equation; numerical test},
language = {eng},
month = {4},
number = {6},
pages = {1389-1405},
publisher = {EDP Sciences},
title = {Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces},
url = {http://eudml.org/doc/277846},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Repin, Sergey I.
AU - Samrowski, Tatiana S.
AU - Sauter, Stéfan A.
TI - Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/4//
PB - EDP Sciences
VL - 46
IS - 6
SP - 1389
EP - 1405
AB - We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of functional type. An efficient numerical strategy is based upon balancing the modeling and discretization errors, which provides an economical way of finding an approximate solution with an a priori given accuracy. Numerical tests demonstrate the reliability and efficiency of this combined modeling-discretization method.
LA - eng
KW - A posteriori error estimate; complicated diffusion coefficient; defeaturing of models; combined modeling discretization adaptive strategy; interfaces; modeling error; discretization error; a posteriori estimates; linear diffusion equation; numerical test
UR - http://eudml.org/doc/277846
ER -

References

top
  1. M. Ainsworth, A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains. Numer. Math.80 (1998) 325–362.  Zbl0912.65087
  2. M. Ainsworth and A. Arnold, A reliable a posteriori error estimator for adaptive hierarchic modeling, in Adv. Adap. Comp. Meth. Mech., edited by P. Ladevéze and J.T. Oden (1998) 101–114.  
  3. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000).  Zbl1008.65076
  4. I. Babuška and W.C. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Math. Eng. 12 (1978) 1597–1615.  Zbl0396.65068
  5. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.15 (1978) 736–754.  Zbl0398.65069
  6. I. Babuška and R. Rodríguez, The problem of the selection of an a posteriori error indicator based on smoothing techniques. Int. J. Numer. Methods Eng.36 (1993) 539–567.  Zbl0770.65065
  7. I. Babuška and C. Schwab, A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal.33 (1996) 221–246.  Zbl0846.65056
  8. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Amsterdam, North-Holland (1978).  Zbl0404.35001
  9. D. Braess, Finite elements : Theory, Fast Solvers and Application in Solid Mechanics. Cambridge University Press (2007).  Zbl1118.65117
  10. D. Braess, An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo46 (2009) 149–155.  Zbl1192.65142
  11. D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements. Math. Comp.77 (2008) 651–672.  Zbl1135.65041
  12. C. Carstensen and S. Sauter, A posteriori error analysis for elliptic PDEs on domains with complicated structures. Numer. Math.96 (2004) 691–721.  Zbl1049.65120
  13. M. Chipot, Elliptic Equations : An Introductory Course. Birkhäuser Verlag AG (2009).  Zbl1171.35003
  14. Ph. Clément, Approximations by finite element functions using local regularization. RAIRO Anal. Numer.9 (1975) 77–84.  Zbl0368.65008
  15. W. Dörfler, M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Math. Comp.671361–1382 (1998).  Zbl0904.65105
  16. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994).  
  17. P. Jiranek, Z. Strakos and M. Vohralik, A posteriori error estimates including algebraic error : computable upper bounds and stopping criteria for iterative solvers, SIAM J. Sci. Comput.32 (2010) 1567–1590.  Zbl1215.65168
  18. P. Neittaanmäki and S.I. Repin, Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Elsevier, New York (2004).  Zbl1076.65093
  19. S. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauch. Semin. (POMI)243 (1997) 201–214.  Zbl0904.65064
  20. S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp.69 (2000) 481–500.  Zbl0949.65070
  21. S. Repin, Two-sided estimates of deviation from exact solutions of uniformly elliptic equations, Proc. of the St. Petersburg Mathematical Society IX, Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI 209 (2003) 143–171.  Zbl1039.65076
  22. S. Repin, A Posteriori Error Estimates For Partial Differential Equations. Walter de Gruyter, Berlin (2008).  Zbl1162.65001
  23. S. Repin and S. Sauter, Functional a posteriori estimates for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris343 (2006) 349–354.  Zbl1100.65093
  24. S. Repin and S. Sauter, Computable estimates of the modeling error related to Kirchhoff-Love plate model. Anal. Appl.8 (2010) 1–20.  Zbl1200.35299
  25. S. Repin and J. Valdman, Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math.16 (2008) 51–81.  Zbl1146.65054
  26. S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing70 (2003) 205–233.  Zbl1128.35319
  27. S. Repin, S. Sauter and A. Smolianski, Duality based a posteriori error estimator for the Dirichlet problem. Proc. Appl. Math. Mech.2 (2003) 513–514.  Zbl1201.65174
  28. S. Repin, S. Sauter and A. Smolianski, A posteriori estimation of dimension reduction errors for elliptic problems in thin domains. SIAM J. Numer. Anal.42 (2004) 1435–1451.  Zbl1073.35072
  29. S. Repin, S. Sauter and A. Smolianski, A posteriori control of dimension reduction errors on long domains. Proc. Appl. Math. Mech.4 (2004) 714–715.  Zbl1073.35072
  30. S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J. Comput. Appl. Math.164-165 (2004) 601–612.  Zbl1038.65114
  31. S. Repin, S. Sauter and A. Smolianski, Two-sided a posteriori error estimates for mixed formulations of elliptic problems. SIAM J. Numer. Anal.45 (2007) 928–945.  Zbl1185.35048
  32. C. Schwab, A posteriori modeling error estimation for hierarchic plate model. Numer. Math.74 (1996) 221–259.  Zbl0856.73031
  33. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Amsterdam (1996).  Zbl0853.65108
  34. J. Valdman, Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method. Adv. Numer. Math., Advances Numer. Anal. (2009) 164519.  Zbl1200.65095
  35. M. Vogelius and I. Babuška, On a dimensional reduction method I. The optimal selection of basis functions. Math. Comput.37 (1981) 31–46.  Zbl0495.65049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.