Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions
Acta Arithmetica (2014)
- Volume: 165, Issue: 1, page 1-10
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topOlivier Ramaré. "Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions." Acta Arithmetica 165.1 (2014): 1-10. <http://eudml.org/doc/279409>.
@article{OlivierRamaré2014,
abstract = {We prove that $|∑_\{d≤x,(d,q)=1\} μ(d)/d| ≤ 2.4(q/φ(q))/log(x/q)$ for every x > q ≥ 1, and similar estimates for the Liouville function. We also give better constants when x/q is large.,},
author = {Olivier Ramaré},
journal = {Acta Arithmetica},
keywords = {Möbius function; Liouville function; explicit estimates},
language = {eng},
number = {1},
pages = {1-10},
title = {Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions},
url = {http://eudml.org/doc/279409},
volume = {165},
year = {2014},
}
TY - JOUR
AU - Olivier Ramaré
TI - Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions
JO - Acta Arithmetica
PY - 2014
VL - 165
IS - 1
SP - 1
EP - 10
AB - We prove that $|∑_{d≤x,(d,q)=1} μ(d)/d| ≤ 2.4(q/φ(q))/log(x/q)$ for every x > q ≥ 1, and similar estimates for the Liouville function. We also give better constants when x/q is large.,
LA - eng
KW - Möbius function; Liouville function; explicit estimates
UR - http://eudml.org/doc/279409
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.