Displaying similar documents to “Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions”

On the behaviour close to the unit circle of the power series with Möbius function coefficients

Oleg Petrushov (2014)

Acta Arithmetica

Similarity:

Let ( z ) = n = 1 μ ( n ) z n . We prove that for each root of unity e ( β ) = e 2 π i β there is an a > 0 such that ( e ( β ) r ) = Ω ( ( 1 - r ) - a ) as r → 1-. For roots of unity e(l/q) with q ≤ 100 we prove that these omega-estimates are true with a = 1/2. From omega-estimates for (z) we obtain omega-estimates for some finite sums.

Some characterizations of the class m ( Ω ) and applications

Hai Mau Le, Hong Xuan Nguyen, Hung Viet Vu (2015)

Annales Polonici Mathematici

Similarity:

We give some characterizations of the class m ( Ω ) and use them to establish a lower estimate for the log canonical threshold of plurisubharmonic functions in this class.

On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values

Oleg Petrushov (2015)

Acta Arithmetica

Similarity:

We consider the behavior of the power series 0 ( z ) = n = 1 μ 2 ( n ) z n as z tends to e ( β ) = e 2 π i β along a radius of the unit circle. If β is irrational with irrationality exponent 2 then 0 ( e ( β ) r ) = O ( ( 1 - r ) - 1 / 2 - ε ) . Also we consider the cases of higher irrationality exponent. We prove that for each δ there exist irrational numbers β such that 0 ( e ( β ) r ) = Ω ( ( 1 - r ) - 1 + δ ) .

Asymmetric covariance estimates of Brascamp–Lieb type and related inequalities for log-concave measures

Eric A. Carlen, Dario Cordero-Erausquin, Elliott H. Lieb (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

An inequality of Brascamp and Lieb provides a bound on the covariance of two functions with respect to log-concave measures. The bound estimates the covariance by the product of the L 2 norms of the gradients of the functions, where the magnitude of the gradient is computed using an inner product given by the inverse Hessian matrix of the potential of the log-concave measure. Menz and Otto [Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site...

Lyapunov functions and L p -estimates for a class of reaction-diffusion systems

Dirk Horstmann (2001)

Colloquium Mathematicae

Similarity:

We give a sufficient condition for the existence of a Lyapunov function for the system aₜ = ∇(k(a,c)∇a - h(a,c)∇c), x ∈ Ω, t > 0, ε c = k c Δ c - f ( c ) c + g ( a , c ) , x ∈ Ω, t > 0, for Ω N , completed with either a = c = 0, or ∂a/∂n = ∂c/∂n = 0, or k(a,c) ∂a/∂n = h(a,c) ∂c/∂n, c = 0 on ∂Ω × t > 0. Furthermore we study the asymptotic behaviour of the solution and give some uniform L p -estimates.

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

Similarity:

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and...

On a sum involving the Möbius function

I. Kiuchi, M. Minamide, Y. Tanigawa (2015)

Acta Arithmetica

Similarity:

Let c q ( n ) be the Ramanujan sum, i.e. c q ( n ) = d | ( q , n ) d μ ( q / d ) , where μ is the Möbius function. In a paper of Chan and Kumchev (2012), asymptotic formulas for n y ( q x c q ( n ) ) k (k = 1,2) are obtained. As an analogous problem, we evaluate n y ( n x c ̂ q ( n ) ) k (k = 1,2), where c ̂ q ( n ) : = d | ( q , n ) d | μ ( q / d ) | .

Uniform L 1 error bounds for semi-discrete finite element solutions of evolutionary integral equations

Lin, Qun, Xu, Da, Zhang, Shuhua

Similarity:

In this paper, we consider the second-order continuous time Galerkin approximation of the solution to the initial problem u t + 0 t β ( t - s ) A u ( s ) d s = 0 , u ( 0 ) = v , t > 0 , where A is an elliptic partial-differential operator and β ( t ) is positive, nonincreasing and log-convex on ( 0 , ) with 0 β ( ) < β ( 0 + ) . Error estimates are derived in the norm of L t 1 ( 0 , ; L x 2 ) , and some estimates for the first order time derivatives of the errors are also given.

Weak-type inequalities for maximal operators acting on Lorentz spaces

Adam Osękowski (2014)

Banach Center Publications

Similarity:

We prove sharp a priori estimates for the distribution function of the dyadic maximal function ℳ ϕ, when ϕ belongs to the Lorentz space L p , q , 1 < p < ∞, 1 ≤ q < ∞. The approach rests on a precise evaluation of the Bellman function corresponding to the problem. As an application, we establish refined weak-type estimates for the dyadic maximal operator: for p,q as above and r ∈ [1,p], we determine the best constant C p , q , r such that for any ϕ L p , q , | | ϕ | | r , C p , q , r | | ϕ | | p , q .

On sum-product representations in q

Mei-Chu Chang (2006)

Journal of the European Mathematical Society

Similarity:

The purpose of this paper is to investigate efficient representations of the residue classes modulo q , by performing sum and product set operations starting from a given subset A of q . We consider the case of very small sets A and composite q for which not much seemed known (nontrivial results were recently obtained when q is prime or when log | A | log q ). Roughly speaking we show that all residue classes are obtained from a k -fold sum of an r -fold product set of A , where r log q and log k log q , provided the...

Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces

Boban Karapetrović (2018)

Czechoslovak Mathematical Journal

Similarity:

We show that if α > 1 , then the logarithmically weighted Bergman space A log α 2 is mapped by the Libera operator into the space A log α - 1 2 , while if α > 2 and 0 < ε α - 2 , then the Hilbert matrix operator H maps A log α 2 into A log α - 2 - ε 2 .We show that the Libera operator maps the logarithmically weighted Bloch space log α , α , into itself, while H maps log α into log α + 1 .In Pavlović’s paper (2016) it is shown that maps the logarithmically weighted Hardy-Bloch space log α 1 , α > 0 , into log α - 1 1 . We show that this result is sharp. We also show that H maps log α 1 , α 0 ,...