Théorème des nombres premiers pour les fonctions digitales

Bruno Martin; Christian Mauduit; Joël Rivat

Acta Arithmetica (2014)

  • Volume: 165, Issue: 1, page 11-45
  • ISSN: 0065-1036

Abstract

top
The aim of this work is to estimate exponential sums of the form n x Λ ( n ) e x p ( 2 i π ( f ( n ) + β n ) ) , where Λ denotes von Mangoldt’s function, f a digital function, and β ∈ ℝ a parameter. This result can be interpreted as a Prime Number Theorem for rotations (i.e. a Vinogradov type theorem) twisted by digital functions.

How to cite

top

Bruno Martin, Christian Mauduit, and Joël Rivat. "Théorème des nombres premiers pour les fonctions digitales." Acta Arithmetica 165.1 (2014): 11-45. <http://eudml.org/doc/279459>.

@article{BrunoMartin2014,
author = {Bruno Martin, Christian Mauduit, Joël Rivat},
journal = {Acta Arithmetica},
keywords = {prime numbers; exponential sums; digital functions},
language = {fre},
number = {1},
pages = {11-45},
title = {Théorème des nombres premiers pour les fonctions digitales},
url = {http://eudml.org/doc/279459},
volume = {165},
year = {2014},
}

TY - JOUR
AU - Bruno Martin
AU - Christian Mauduit
AU - Joël Rivat
TI - Théorème des nombres premiers pour les fonctions digitales
JO - Acta Arithmetica
PY - 2014
VL - 165
IS - 1
SP - 11
EP - 45
LA - fre
KW - prime numbers; exponential sums; digital functions
UR - http://eudml.org/doc/279459
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.