Fonctions digitales le long des nombres premiers

Bruno Martin; Christian Mauduit; Joël Rivat

Acta Arithmetica (2015)

  • Volume: 170, Issue: 2, page 175-197
  • ISSN: 0065-1036

Abstract

top
In a recent work we gave some estimations for exponential sums of the form n x Λ ( n ) e x p ( 2 i π ( f ( n ) + β n ) ) , where Λ denotes the von Mangoldt function, f a digital function, and β a real parameter. The aim of this work is to show how these results can be used to study the statistical properties of digital functions along prime numbers.

How to cite

top

Bruno Martin, Christian Mauduit, and Joël Rivat. "Fonctions digitales le long des nombres premiers." Acta Arithmetica 170.2 (2015): 175-197. <http://eudml.org/doc/279515>.

@article{BrunoMartin2015,
author = {Bruno Martin, Christian Mauduit, Joël Rivat},
journal = {Acta Arithmetica},
keywords = {prime numbers; exponential sums; digital functions},
language = {fre},
number = {2},
pages = {175-197},
title = {Fonctions digitales le long des nombres premiers},
url = {http://eudml.org/doc/279515},
volume = {170},
year = {2015},
}

TY - JOUR
AU - Bruno Martin
AU - Christian Mauduit
AU - Joël Rivat
TI - Fonctions digitales le long des nombres premiers
JO - Acta Arithmetica
PY - 2015
VL - 170
IS - 2
SP - 175
EP - 197
LA - fre
KW - prime numbers; exponential sums; digital functions
UR - http://eudml.org/doc/279515
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.