Existence of solutions to the Poisson equation in L₂-weighted spaces
Joanna Rencławowicz; Wojciech M. Zajączkowski
Applicationes Mathematicae (2010)
- Volume: 37, Issue: 3, page 309-323
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topJoanna Rencławowicz, and Wojciech M. Zajączkowski. "Existence of solutions to the Poisson equation in L₂-weighted spaces." Applicationes Mathematicae 37.3 (2010): 309-323. <http://eudml.org/doc/279889>.
@article{JoannaRencławowicz2010,
abstract = {We consider the Poisson equation with the Dirichlet and the Neumann boundary conditions in weighted Sobolev spaces. The weight is a positive power of the distance to a distinguished plane. We prove the existence of solutions in a suitably defined weighted space.},
author = {Joanna Rencławowicz, Wojciech M. Zajączkowski},
journal = {Applicationes Mathematicae},
keywords = {Poisson equation; weighted Sobolev spaces; Neumann boundary-value problem; Dirichlet boundary-value problem},
language = {eng},
number = {3},
pages = {309-323},
title = {Existence of solutions to the Poisson equation in L₂-weighted spaces},
url = {http://eudml.org/doc/279889},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Joanna Rencławowicz
AU - Wojciech M. Zajączkowski
TI - Existence of solutions to the Poisson equation in L₂-weighted spaces
JO - Applicationes Mathematicae
PY - 2010
VL - 37
IS - 3
SP - 309
EP - 323
AB - We consider the Poisson equation with the Dirichlet and the Neumann boundary conditions in weighted Sobolev spaces. The weight is a positive power of the distance to a distinguished plane. We prove the existence of solutions in a suitably defined weighted space.
LA - eng
KW - Poisson equation; weighted Sobolev spaces; Neumann boundary-value problem; Dirichlet boundary-value problem
UR - http://eudml.org/doc/279889
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.