Grauert's line bundle convexity, reduction and Riemann domains

Viorel Vâjâitu

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 493-509
  • ISSN: 0011-4642

Abstract

top
We consider a convexity notion for complex spaces X with respect to a holomorphic line bundle L over X . This definition has been introduced by Grauert and, when L is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if H 0 ( X , L ) separates each point of X , then X can be realized as a Riemann domain over the complex projective space n , where n is the complex dimension of X and L is the pull-back of 𝒪 ( 1 ) .

How to cite

top

Vâjâitu, Viorel. "Grauert's line bundle convexity, reduction and Riemann domains." Czechoslovak Mathematical Journal 66.2 (2016): 493-509. <http://eudml.org/doc/280097>.

@article{Vâjâitu2016,
abstract = {We consider a convexity notion for complex spaces $X$ with respect to a holomorphic line bundle $L$ over $X$. This definition has been introduced by Grauert and, when $L$ is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if $H^0(X,L)$ separates each point of $X$, then $X$ can be realized as a Riemann domain over the complex projective space $\mathbb \{P\}^n$, where $n$ is the complex dimension of $X$ and $L$ is the pull-back of $\{\mathcal \{O\}\}(1)$.},
author = {Vâjâitu, Viorel},
journal = {Czechoslovak Mathematical Journal},
keywords = {Grauert's line bundle convexity; Riemann domain; holomorphic reduction},
language = {eng},
number = {2},
pages = {493-509},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Grauert's line bundle convexity, reduction and Riemann domains},
url = {http://eudml.org/doc/280097},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Vâjâitu, Viorel
TI - Grauert's line bundle convexity, reduction and Riemann domains
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 493
EP - 509
AB - We consider a convexity notion for complex spaces $X$ with respect to a holomorphic line bundle $L$ over $X$. This definition has been introduced by Grauert and, when $L$ is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if $H^0(X,L)$ separates each point of $X$, then $X$ can be realized as a Riemann domain over the complex projective space $\mathbb {P}^n$, where $n$ is the complex dimension of $X$ and $L$ is the pull-back of ${\mathcal {O}}(1)$.
LA - eng
KW - Grauert's line bundle convexity; Riemann domain; holomorphic reduction
UR - http://eudml.org/doc/280097
ER -

References

top
  1. Andreotti, A., Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. Fr. 91 (1963), 1-38 French. (1963) Zbl0113.06403MR0152674
  2. Stănăşilă, C. Bănică; O., Méthodes Algébriques dans la Théorie Globale des Espaces Complexes. Vol. 2. Traduit du Roumain, Collection ``Varia Mathematica'' Gauthier-Villars, Paris (1977), French. (1977) MR0508024
  3. Silva, D. Barlet; A., 10.1007/BF01445127, Math. Ann. 296 (1993), 649-665 French. English summary. (1993) MR1233489DOI10.1007/BF01445127
  4. Cartan, H., Quotients of complex analytic spaces, Contrib. Function Theory Int. Colloqu. Bombay, 1960 Tata Institute of Fundamental Research, Bombay (1960), 1-15. (1960) Zbl0154.33603MR0139769
  5. Grauert, H., Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z. 81 (1963), 377-391 German. (1963) Zbl0151.09702MR0168798
  6. Grauert, H., 10.1007/BF01362369, Math. Ann. 129 (1955), 233-259 German. (1955) Zbl0064.32603MR0071084DOI10.1007/BF01362369
  7. Kaup, B., 10.1007/BF01361259, Math. Ann. 183 (1969), 6-16 German. (1969) MR0248348DOI10.1007/BF01361259
  8. Remmert, R., Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, C. R. Acad. Sci., Paris 243 (1956), 118-121 French. (1956) Zbl0070.30401MR0079808
  9. Shiffman, B., 10.1307/mmj/1028999912, Mich. Math. J. 15 (1968), 111-120. (1968) MR0224865DOI10.1307/mmj/1028999912
  10. Siu, Y.-T., Techniques of Extension of Analytic Objects, Lecture Notes in Pure and Applied Mathematics, Vol. 8 Marcel Dekker, New York (1974). (1974) Zbl0294.32007MR0361154
  11. Ueda, T., 10.1215/kjm/1250521670, J. Math. Kyoto Univ. 22 (1983), 583-607. (1983) Zbl0519.32019MR0685520DOI10.1215/kjm/1250521670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.