Grauert's line bundle convexity, reduction and Riemann domains
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 493-509
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topVâjâitu, Viorel. "Grauert's line bundle convexity, reduction and Riemann domains." Czechoslovak Mathematical Journal 66.2 (2016): 493-509. <http://eudml.org/doc/280097>.
@article{Vâjâitu2016,
abstract = {We consider a convexity notion for complex spaces $X$ with respect to a holomorphic line bundle $L$ over $X$. This definition has been introduced by Grauert and, when $L$ is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if $H^0(X,L)$ separates each point of $X$, then $X$ can be realized as a Riemann domain over the complex projective space $\mathbb \{P\}^n$, where $n$ is the complex dimension of $X$ and $L$ is the pull-back of $\{\mathcal \{O\}\}(1)$.},
author = {Vâjâitu, Viorel},
journal = {Czechoslovak Mathematical Journal},
keywords = {Grauert's line bundle convexity; Riemann domain; holomorphic reduction},
language = {eng},
number = {2},
pages = {493-509},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Grauert's line bundle convexity, reduction and Riemann domains},
url = {http://eudml.org/doc/280097},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Vâjâitu, Viorel
TI - Grauert's line bundle convexity, reduction and Riemann domains
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 493
EP - 509
AB - We consider a convexity notion for complex spaces $X$ with respect to a holomorphic line bundle $L$ over $X$. This definition has been introduced by Grauert and, when $L$ is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if $H^0(X,L)$ separates each point of $X$, then $X$ can be realized as a Riemann domain over the complex projective space $\mathbb {P}^n$, where $n$ is the complex dimension of $X$ and $L$ is the pull-back of ${\mathcal {O}}(1)$.
LA - eng
KW - Grauert's line bundle convexity; Riemann domain; holomorphic reduction
UR - http://eudml.org/doc/280097
ER -
References
top- Andreotti, A., Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. Fr. 91 (1963), 1-38 French. (1963) Zbl0113.06403MR0152674
- Stănăşilă, C. Bănică; O., Méthodes Algébriques dans la Théorie Globale des Espaces Complexes. Vol. 2. Traduit du Roumain, Collection ``Varia Mathematica'' Gauthier-Villars, Paris (1977), French. (1977) MR0508024
- Silva, D. Barlet; A., 10.1007/BF01445127, Math. Ann. 296 (1993), 649-665 French. English summary. (1993) MR1233489DOI10.1007/BF01445127
- Cartan, H., Quotients of complex analytic spaces, Contrib. Function Theory Int. Colloqu. Bombay, 1960 Tata Institute of Fundamental Research, Bombay (1960), 1-15. (1960) Zbl0154.33603MR0139769
- Grauert, H., Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z. 81 (1963), 377-391 German. (1963) Zbl0151.09702MR0168798
- Grauert, H., 10.1007/BF01362369, Math. Ann. 129 (1955), 233-259 German. (1955) Zbl0064.32603MR0071084DOI10.1007/BF01362369
- Kaup, B., 10.1007/BF01361259, Math. Ann. 183 (1969), 6-16 German. (1969) MR0248348DOI10.1007/BF01361259
- Remmert, R., Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, C. R. Acad. Sci., Paris 243 (1956), 118-121 French. (1956) Zbl0070.30401MR0079808
- Shiffman, B., 10.1307/mmj/1028999912, Mich. Math. J. 15 (1968), 111-120. (1968) MR0224865DOI10.1307/mmj/1028999912
- Siu, Y.-T., Techniques of Extension of Analytic Objects, Lecture Notes in Pure and Applied Mathematics, Vol. 8 Marcel Dekker, New York (1974). (1974) Zbl0294.32007MR0361154
- Ueda, T., 10.1215/kjm/1250521670, J. Math. Kyoto Univ. 22 (1983), 583-607. (1983) Zbl0519.32019MR0685520DOI10.1215/kjm/1250521670
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.