Analytic sheaves in Banach spaces
For a strongly pseudoconvex domain defined by a real polynomial of degree , we prove that the Lie group can be identified with a constructible Nash algebraic smooth variety in the CR structure bundle of , and that the sum of its Betti numbers is bounded by a certain constant depending only on and . In case is simply connected, we further give an explicit but quite rough bound in terms of the dimension and the degree of the defining polynomial. Our approach is to adapt the Cartan-Chern-Moser...
We consider a convexity notion for complex spaces with respect to a holomorphic line bundle over . This definition has been introduced by Grauert and, when is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if separates each point of , then can be realized as a Riemann domain over the complex projective space...