Page 1

Displaying 1 – 12 of 12

Showing per page

Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains

Xiaojun Huang, Shanyu Ji (2002)

Annales de l’institut Fourier

For a strongly pseudoconvex domain D n + 1 defined by a real polynomial of degree k 0 , we prove that the Lie group Aut ( D ) can be identified with a constructible Nash algebraic smooth variety in the CR structure bundle Y of D , and that the sum of its Betti numbers is bounded by a certain constant C n , k 0 depending only on n and k 0 . In case D is simply connected, we further give an explicit but quite rough bound in terms of the dimension and the degree of the defining polynomial. Our approach is to adapt the Cartan-Chern-Moser...

Grauert's line bundle convexity, reduction and Riemann domains

Viorel Vâjâitu (2016)

Czechoslovak Mathematical Journal

We consider a convexity notion for complex spaces X with respect to a holomorphic line bundle L over X . This definition has been introduced by Grauert and, when L is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if H 0 ( X , L ) separates each point of X , then X can be realized as a Riemann domain over the complex projective space...

Currently displaying 1 – 12 of 12

Page 1