Generalizations of Milne’s U ( n + 1 ) q -Chu-Vandermonde summation

Jian-Ping Fang

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 395-407
  • ISSN: 0011-4642

Abstract

top
We derive two identities for multiple basic hyper-geometric series associated with the unitary U ( n + 1 ) group. In order to get the two identities, we first present two known q -exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two U ( n + 1 ) q -Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial coefficients. In addition, we also derive two nontrivial summation equations from the two multiple extensions.

How to cite

top

Fang, Jian-Ping. "Generalizations of Milne’s $U(n+1)$$q$-Chu-Vandermonde summation." Czechoslovak Mathematical Journal 66.2 (2016): 395-407. <http://eudml.org/doc/280098>.

@article{Fang2016,
abstract = {We derive two identities for multiple basic hyper-geometric series associated with the unitary $U(n+1)$ group. In order to get the two identities, we first present two known $q$-exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two $U(n+1)$$q$-Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial coefficients. In addition, we also derive two nontrivial summation equations from the two multiple extensions.},
author = {Fang, Jian-Ping},
journal = {Czechoslovak Mathematical Journal},
keywords = {$U(n+1)$ group; multiple basic hypergeometric series; basic hypergeometric series},
language = {eng},
number = {2},
pages = {395-407},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalizations of Milne’s $U(n+1)$$q$-Chu-Vandermonde summation},
url = {http://eudml.org/doc/280098},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Fang, Jian-Ping
TI - Generalizations of Milne’s $U(n+1)$$q$-Chu-Vandermonde summation
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 395
EP - 407
AB - We derive two identities for multiple basic hyper-geometric series associated with the unitary $U(n+1)$ group. In order to get the two identities, we first present two known $q$-exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two $U(n+1)$$q$-Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial coefficients. In addition, we also derive two nontrivial summation equations from the two multiple extensions.
LA - eng
KW - $U(n+1)$ group; multiple basic hypergeometric series; basic hypergeometric series
UR - http://eudml.org/doc/280098
ER -

References

top
  1. Andrews, G. E., Problems and prospects for basic hypergeometric functions, Theory and Application of Special Functions R. Askey Academic Press New York (1975), 191-224. (1975) Zbl0342.33001MR0399528
  2. Bhatnagar, G., Schlosser, M., 10.1007/s003659900089, Constr. Approx. 14 (1998), 531-567. (1998) Zbl0936.33009MR1646535DOI10.1007/s003659900089
  3. Bowman, D., q -difference operators, orthogonal polynomials, and symmetric expansions, Mem. Am. Math. Soc. 159 (2002), 56 pages. (2002) Zbl1018.33014MR1921582
  4. Carlitz, L., Generating functions for certain q -orthogonal polynomials, Collect. Math. 23 (1972), 91-104. (1972) Zbl0273.33012MR0316773
  5. Chen, W. Y. C., Liu, Z.-G., 10.1006/jcta.1997.2801, J. Combin. Theory Ser. A 80 (1997), 175-195. (1997) Zbl0901.33009MR1485133DOI10.1006/jcta.1997.2801
  6. Denis, R. Y., Gustafson, R. A., 10.1137/0523027, SIAM J. Math. Anal. 23 (1992), 552-561. (1992) Zbl0777.33009MR1147877DOI10.1137/0523027
  7. Fang, J.-P., 10.4134/JKMS.2010.47.2.223, J. Korean Math. Soc. 47 (2010), 223-233. (2010) Zbl1230.05048MR2605977DOI10.4134/JKMS.2010.47.2.223
  8. Fang, J.-P., 10.1016/j.jmaa.2007.07.029, J. Math. Anal. Appl. 339 (2008), 845-852. (2008) Zbl1160.33011MR2375241DOI10.1016/j.jmaa.2007.07.029
  9. Fang, J.-P., 10.1016/j.jmaa.2006.10.087, J. Math. Anal. Appl. 332 (2007), 1393-1407. (2007) Zbl1114.33023MR2324346DOI10.1016/j.jmaa.2006.10.087
  10. Gasper, G., Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications 96 Cambridge University Press, Cambridge (2004). (2004) Zbl1129.33005MR2128719
  11. Gustafson, R. A., 10.1137/0523026, SIAM J. Math. Anal. 23 (1992), 525-551. (1992) Zbl0764.33008MR1147876DOI10.1137/0523026
  12. Gustafson, R. A., 10.1137/0518114, SIAM J. Math. Anal. 18 (1987), 1576-1596. (1987) Zbl0624.33012MR0911651DOI10.1137/0518114
  13. Gustafson, R. A., Krattenthaler, C., 10.1016/0377-0427(95)00260-X, J. Comput. Appl. Math. 68 (1996), 151-158. (1996) Zbl0853.33015MR1418755DOI10.1016/0377-0427(95)00260-X
  14. Liu, Z.-G., 10.1016/S0012-365X(02)00626-X, Discrete Math. 265 (2003), 119-139. (2003) Zbl1021.05010MR1969370DOI10.1016/S0012-365X(02)00626-X
  15. Milne, S. C., 10.1006/aima.1997.1658, Adv. Math. 131 (1997), 93-187. (1997) MR1475046DOI10.1006/aima.1997.1658
  16. Milne, S. C., 10.1016/0001-8708(85)90106-9, Adv. Math. 57 (1985), 71-90. (1985) MR0800860DOI10.1016/0001-8708(85)90106-9
  17. Milne, S. C., 10.1016/0001-8708(85)90105-7, Adv. Math. 57 (1985), 34-70. (1985) MR0800859DOI10.1016/0001-8708(85)90105-7
  18. Milne, S. C., Newcomb, J. W., 10.1016/0377-0427(95)00248-0, J. Comput. Appl. Math. 68 (1996), 239-285. (1996) MR1418761DOI10.1016/0377-0427(95)00248-0
  19. Rogers, L. J., On the expansion of some infinite products, Lond. M. S. Proc. 25 (1894), 318-343. (1894) 
  20. Rogers, L. J., On the expansion of some infinite products, Lond. M. S. Proc. 24 (1893), 337-352. (1893) MR1577136
  21. Schlosser, M., 10.1016/S0012-365X(99)00125-9, Discrete Math. 210 (2000), 151-169. (2000) Zbl0941.33012MR1731612DOI10.1016/S0012-365X(99)00125-9
  22. Schlosser, M., 10.1023/A:1009809424076, Ramanujan J. 3 (1999), 405-461. (1999) Zbl0944.33016MR1738906DOI10.1023/A:1009809424076
  23. Wang, M., 10.1016/j.camwa.2009.03.086, Comput. Math. Appl. 58 (2009), 80-87. (2009) MR2535969DOI10.1016/j.camwa.2009.03.086
  24. Zhang, Z., 10.1016/j.jmaa.2005.12.073, J. Math. Anal. Appl. 324 (2006), 1152-1167. (2006) Zbl1113.33020MR2266549DOI10.1016/j.jmaa.2005.12.073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.