Generalizations of Milne’s -Chu-Vandermonde summation
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 395-407
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFang, Jian-Ping. "Generalizations of Milne’s $U(n+1)$$q$-Chu-Vandermonde summation." Czechoslovak Mathematical Journal 66.2 (2016): 395-407. <http://eudml.org/doc/280098>.
@article{Fang2016,
abstract = {We derive two identities for multiple basic hyper-geometric series associated with the unitary $U(n+1)$ group. In order to get the two identities, we first present two known $q$-exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two $U(n+1)$$q$-Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial coefficients. In addition, we also derive two nontrivial summation equations from the two multiple extensions.},
author = {Fang, Jian-Ping},
journal = {Czechoslovak Mathematical Journal},
keywords = {$U(n+1)$ group; multiple basic hypergeometric series; basic hypergeometric series},
language = {eng},
number = {2},
pages = {395-407},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalizations of Milne’s $U(n+1)$$q$-Chu-Vandermonde summation},
url = {http://eudml.org/doc/280098},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Fang, Jian-Ping
TI - Generalizations of Milne’s $U(n+1)$$q$-Chu-Vandermonde summation
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 395
EP - 407
AB - We derive two identities for multiple basic hyper-geometric series associated with the unitary $U(n+1)$ group. In order to get the two identities, we first present two known $q$-exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two $U(n+1)$$q$-Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial coefficients. In addition, we also derive two nontrivial summation equations from the two multiple extensions.
LA - eng
KW - $U(n+1)$ group; multiple basic hypergeometric series; basic hypergeometric series
UR - http://eudml.org/doc/280098
ER -
References
top- Andrews, G. E., Problems and prospects for basic hypergeometric functions, Theory and Application of Special Functions R. Askey Academic Press New York (1975), 191-224. (1975) Zbl0342.33001MR0399528
- Bhatnagar, G., Schlosser, M., 10.1007/s003659900089, Constr. Approx. 14 (1998), 531-567. (1998) Zbl0936.33009MR1646535DOI10.1007/s003659900089
- Bowman, D., -difference operators, orthogonal polynomials, and symmetric expansions, Mem. Am. Math. Soc. 159 (2002), 56 pages. (2002) Zbl1018.33014MR1921582
- Carlitz, L., Generating functions for certain -orthogonal polynomials, Collect. Math. 23 (1972), 91-104. (1972) Zbl0273.33012MR0316773
- Chen, W. Y. C., Liu, Z.-G., 10.1006/jcta.1997.2801, J. Combin. Theory Ser. A 80 (1997), 175-195. (1997) Zbl0901.33009MR1485133DOI10.1006/jcta.1997.2801
- Denis, R. Y., Gustafson, R. A., 10.1137/0523027, SIAM J. Math. Anal. 23 (1992), 552-561. (1992) Zbl0777.33009MR1147877DOI10.1137/0523027
- Fang, J.-P., 10.4134/JKMS.2010.47.2.223, J. Korean Math. Soc. 47 (2010), 223-233. (2010) Zbl1230.05048MR2605977DOI10.4134/JKMS.2010.47.2.223
- Fang, J.-P., 10.1016/j.jmaa.2007.07.029, J. Math. Anal. Appl. 339 (2008), 845-852. (2008) Zbl1160.33011MR2375241DOI10.1016/j.jmaa.2007.07.029
- Fang, J.-P., 10.1016/j.jmaa.2006.10.087, J. Math. Anal. Appl. 332 (2007), 1393-1407. (2007) Zbl1114.33023MR2324346DOI10.1016/j.jmaa.2006.10.087
- Gasper, G., Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications 96 Cambridge University Press, Cambridge (2004). (2004) Zbl1129.33005MR2128719
- Gustafson, R. A., 10.1137/0523026, SIAM J. Math. Anal. 23 (1992), 525-551. (1992) Zbl0764.33008MR1147876DOI10.1137/0523026
- Gustafson, R. A., 10.1137/0518114, SIAM J. Math. Anal. 18 (1987), 1576-1596. (1987) Zbl0624.33012MR0911651DOI10.1137/0518114
- Gustafson, R. A., Krattenthaler, C., 10.1016/0377-0427(95)00260-X, J. Comput. Appl. Math. 68 (1996), 151-158. (1996) Zbl0853.33015MR1418755DOI10.1016/0377-0427(95)00260-X
- Liu, Z.-G., 10.1016/S0012-365X(02)00626-X, Discrete Math. 265 (2003), 119-139. (2003) Zbl1021.05010MR1969370DOI10.1016/S0012-365X(02)00626-X
- Milne, S. C., 10.1006/aima.1997.1658, Adv. Math. 131 (1997), 93-187. (1997) MR1475046DOI10.1006/aima.1997.1658
- Milne, S. C., 10.1016/0001-8708(85)90106-9, Adv. Math. 57 (1985), 71-90. (1985) MR0800860DOI10.1016/0001-8708(85)90106-9
- Milne, S. C., 10.1016/0001-8708(85)90105-7, Adv. Math. 57 (1985), 34-70. (1985) MR0800859DOI10.1016/0001-8708(85)90105-7
- Milne, S. C., Newcomb, J. W., 10.1016/0377-0427(95)00248-0, J. Comput. Appl. Math. 68 (1996), 239-285. (1996) MR1418761DOI10.1016/0377-0427(95)00248-0
- Rogers, L. J., On the expansion of some infinite products, Lond. M. S. Proc. 25 (1894), 318-343. (1894)
- Rogers, L. J., On the expansion of some infinite products, Lond. M. S. Proc. 24 (1893), 337-352. (1893) MR1577136
- Schlosser, M., 10.1016/S0012-365X(99)00125-9, Discrete Math. 210 (2000), 151-169. (2000) Zbl0941.33012MR1731612DOI10.1016/S0012-365X(99)00125-9
- Schlosser, M., 10.1023/A:1009809424076, Ramanujan J. 3 (1999), 405-461. (1999) Zbl0944.33016MR1738906DOI10.1023/A:1009809424076
- Wang, M., 10.1016/j.camwa.2009.03.086, Comput. Math. Appl. 58 (2009), 80-87. (2009) MR2535969DOI10.1016/j.camwa.2009.03.086
- Zhang, Z., 10.1016/j.jmaa.2005.12.073, J. Math. Anal. Appl. 324 (2006), 1152-1167. (2006) Zbl1113.33020MR2266549DOI10.1016/j.jmaa.2005.12.073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.