A short note on L q theory for Stokes problem with a pressure-dependent viscosity

Václav Mácha

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 317-329
  • ISSN: 0011-4642

Abstract

top
We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u , namely, it is represented by a stress tensor T ( D u , p ) : = ν ( p , | D | 2 ) D which satisfies r -growth condition with r ( 1 , 2 ] . In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).

How to cite

top

Mácha, Václav. "A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity." Czechoslovak Mathematical Journal 66.2 (2016): 317-329. <http://eudml.org/doc/280107>.

@article{Mácha2016,
abstract = {We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on $p$ and on the symmetric part of a gradient of $u$, namely, it is represented by a stress tensor $T(Du,p):=\nu (p,|D|^2)D$ which satisfies $r$-growth condition with $r\in (1,2]$. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).},
author = {Mácha, Václav},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stokes problem; $L^q$ theory; pressure-dependent viscosity},
language = {eng},
number = {2},
pages = {317-329},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity},
url = {http://eudml.org/doc/280107},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Mácha, Václav
TI - A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 317
EP - 329
AB - We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on $p$ and on the symmetric part of a gradient of $u$, namely, it is represented by a stress tensor $T(Du,p):=\nu (p,|D|^2)D$ which satisfies $r$-growth condition with $r\in (1,2]$. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).
LA - eng
KW - Stokes problem; $L^q$ theory; pressure-dependent viscosity
UR - http://eudml.org/doc/280107
ER -

References

top
  1. Amrouche, C., Girault, V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J. 44 (1994), 109-140. (1994) Zbl0823.35140MR1257940
  2. Bridgman, P. W., The Physics of High Pressure, MacMillan, New York (1931). (1931) 
  3. Bulíček, M., Fišerová, V., 10.4171/ZAA/1389, Z. Anal. Anwend. 28 (2009), 349-371. (2009) Zbl1198.35174MR2506365DOI10.4171/ZAA/1389
  4. Bulíček, M., Kaplický, P., Incompressible fluids with shear rate and pressure dependent viscosity: regularity of steady planar flows, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 41-50. (2008) Zbl1153.35314MR2375580
  5. Bulíček, M., Málek, J., Rajagopal, K. R., 10.1007/s10587-009-0034-2, Czech. Math. J. 59 (2009), 503-528. (2009) MR2532387DOI10.1007/s10587-009-0034-2
  6. Caffarelli, L. A., Peral, I., 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G, Commun. Pure Appl. Math. 51 (1998), 1-21. (1998) Zbl0906.35030MR1486629DOI10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
  7. Diening, L., Ettwein, F., 10.1515/FORUM.2008.027, Forum Math. 20 (2008), 523-556. (2008) Zbl1188.35069MR2418205DOI10.1515/FORUM.2008.027
  8. Diening, L., Kaplický, P., 10.1007/s00229-012-0574-x, Manuscr. Math. 141 (2013), 333-361. (2013) Zbl1263.35175MR3042692DOI10.1007/s00229-012-0574-x
  9. Diening, L., Růžička, M., Schumacher, K., 10.5186/aasfm.2010.3506, Ann. Acad. Sci. Fenn. Math. 35 (2010), 87-114. (2010) Zbl1194.26022MR2643399DOI10.5186/aasfm.2010.3506
  10. Franta, M., Málek, J., Rajagopal, K. R., On steady flows of fluids with pressure- and shear-dependent viscosities, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. (2005), 461 651-670. (2005) Zbl1145.76311MR2121929
  11. Gazzola, F., Secchi, P., Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity, Navier-Stokes Equations: Theory and Numerical Methods, Varenna, 1997 R. Salvi 31-37 Pitman Res. Notes Math. Ser. 388 Longman, Harlow (1998). (1998) Zbl0940.35156MR1773582
  12. Giusti, E., Metodi Diretti Nel Calcolo Delle Variazioni, Italian Unione Matematica Italiana, Bologna (1994). (1994) Zbl0942.49002MR1707291
  13. Iwaniec, T., 10.5186/aasfm.1982.0719, Ann. Acad. Sci. Fenn. Ser. A I, Math. 7 (1982), 301-322. (1982) Zbl0505.30011MR0686647DOI10.5186/aasfm.1982.0719
  14. Knauf, S., Frei, S., Richter, T., Rannacher, R., 10.1007/s00466-013-0904-1, Comput. Mech. 53 (2014), 239-255. (2014) MR3158820DOI10.1007/s00466-013-0904-1
  15. Lanzendörfer, M., On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate, Nonlinear Anal., Real World Appl. 10 (2009), 1943-1954. (2009) Zbl1163.76335MR2508405
  16. Lanzendörfer, M., Numerical Simulations of the Flow in the Journal Bearing. Master's Thesis, Charles University in Prague, Faculty of Mathematics and Physics (2003). (2003) 
  17. Lanzendörfer, M., Stebel, J., 10.1007/s10492-011-0016-1, Appl. Math., Praha 56 (2011), 265-285. (2011) Zbl1224.35347MR2800578DOI10.1007/s10492-011-0016-1
  18. Mácha, V., Partial regularity of solution to generalized Navier-Stokes problem, Cent. Eur. J. Math. 12 (2014), 1460-1483. (2014) Zbl1303.35058MR3224012
  19. Mácha, V., Tichý, J., 10.1007/s00021-014-0190-5, J. Math. Fluid Mech. 16 (2014), 823-845. (2014) MR3267551DOI10.1007/s00021-014-0190-5
  20. Málek, J., Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations, Electron. Trans. Numer. Anal. 31 (2008), 110-125. (2008) Zbl1182.35182MR2569596
  21. Málek, J., Mingione, G., Stará, J., Fluids with Pressure Dependent Viscosity, Partial Regularity of Steady Flows, F. Dumortier, et al. Equadiff 2003. Proc. Int. Conf. Differential Equations World Sci. Publ., Hackensack 380-385 (2005). (2005) Zbl1101.76021MR2185057
  22. Málek, J., Nečas, J., Rajagopal, K. R., 10.1007/s00205-002-0219-4, Arch. Ration. Mech. Anal. 165 (2002), 243-269. (2002) Zbl1022.76011MR1941479DOI10.1007/s00205-002-0219-4
  23. Roubíček, T., Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics 153 Birkhäuser, Basel (2005). (2005) Zbl1087.35002MR2176645

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.