A short note on theory for Stokes problem with a pressure-dependent viscosity
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 317-329
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMácha, Václav. "A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity." Czechoslovak Mathematical Journal 66.2 (2016): 317-329. <http://eudml.org/doc/280107>.
@article{Mácha2016,
abstract = {We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on $p$ and on the symmetric part of a gradient of $u$, namely, it is represented by a stress tensor $T(Du,p):=\nu (p,|D|^2)D$ which satisfies $r$-growth condition with $r\in (1,2]$. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).},
author = {Mácha, Václav},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stokes problem; $L^q$ theory; pressure-dependent viscosity},
language = {eng},
number = {2},
pages = {317-329},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity},
url = {http://eudml.org/doc/280107},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Mácha, Václav
TI - A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 317
EP - 329
AB - We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on $p$ and on the symmetric part of a gradient of $u$, namely, it is represented by a stress tensor $T(Du,p):=\nu (p,|D|^2)D$ which satisfies $r$-growth condition with $r\in (1,2]$. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).
LA - eng
KW - Stokes problem; $L^q$ theory; pressure-dependent viscosity
UR - http://eudml.org/doc/280107
ER -
References
top- Amrouche, C., Girault, V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J. 44 (1994), 109-140. (1994) Zbl0823.35140MR1257940
- Bridgman, P. W., The Physics of High Pressure, MacMillan, New York (1931). (1931)
- Bulíček, M., Fišerová, V., 10.4171/ZAA/1389, Z. Anal. Anwend. 28 (2009), 349-371. (2009) Zbl1198.35174MR2506365DOI10.4171/ZAA/1389
- Bulíček, M., Kaplický, P., Incompressible fluids with shear rate and pressure dependent viscosity: regularity of steady planar flows, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 41-50. (2008) Zbl1153.35314MR2375580
- Bulíček, M., Málek, J., Rajagopal, K. R., 10.1007/s10587-009-0034-2, Czech. Math. J. 59 (2009), 503-528. (2009) MR2532387DOI10.1007/s10587-009-0034-2
- Caffarelli, L. A., Peral, I., 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G, Commun. Pure Appl. Math. 51 (1998), 1-21. (1998) Zbl0906.35030MR1486629DOI10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
- Diening, L., Ettwein, F., 10.1515/FORUM.2008.027, Forum Math. 20 (2008), 523-556. (2008) Zbl1188.35069MR2418205DOI10.1515/FORUM.2008.027
- Diening, L., Kaplický, P., 10.1007/s00229-012-0574-x, Manuscr. Math. 141 (2013), 333-361. (2013) Zbl1263.35175MR3042692DOI10.1007/s00229-012-0574-x
- Diening, L., Růžička, M., Schumacher, K., 10.5186/aasfm.2010.3506, Ann. Acad. Sci. Fenn. Math. 35 (2010), 87-114. (2010) Zbl1194.26022MR2643399DOI10.5186/aasfm.2010.3506
- Franta, M., Málek, J., Rajagopal, K. R., On steady flows of fluids with pressure- and shear-dependent viscosities, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. (2005), 461 651-670. (2005) Zbl1145.76311MR2121929
- Gazzola, F., Secchi, P., Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity, Navier-Stokes Equations: Theory and Numerical Methods, Varenna, 1997 R. Salvi 31-37 Pitman Res. Notes Math. Ser. 388 Longman, Harlow (1998). (1998) Zbl0940.35156MR1773582
- Giusti, E., Metodi Diretti Nel Calcolo Delle Variazioni, Italian Unione Matematica Italiana, Bologna (1994). (1994) Zbl0942.49002MR1707291
- Iwaniec, T., 10.5186/aasfm.1982.0719, Ann. Acad. Sci. Fenn. Ser. A I, Math. 7 (1982), 301-322. (1982) Zbl0505.30011MR0686647DOI10.5186/aasfm.1982.0719
- Knauf, S., Frei, S., Richter, T., Rannacher, R., 10.1007/s00466-013-0904-1, Comput. Mech. 53 (2014), 239-255. (2014) MR3158820DOI10.1007/s00466-013-0904-1
- Lanzendörfer, M., On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate, Nonlinear Anal., Real World Appl. 10 (2009), 1943-1954. (2009) Zbl1163.76335MR2508405
- Lanzendörfer, M., Numerical Simulations of the Flow in the Journal Bearing. Master's Thesis, Charles University in Prague, Faculty of Mathematics and Physics (2003). (2003)
- Lanzendörfer, M., Stebel, J., 10.1007/s10492-011-0016-1, Appl. Math., Praha 56 (2011), 265-285. (2011) Zbl1224.35347MR2800578DOI10.1007/s10492-011-0016-1
- Mácha, V., Partial regularity of solution to generalized Navier-Stokes problem, Cent. Eur. J. Math. 12 (2014), 1460-1483. (2014) Zbl1303.35058MR3224012
- Mácha, V., Tichý, J., 10.1007/s00021-014-0190-5, J. Math. Fluid Mech. 16 (2014), 823-845. (2014) MR3267551DOI10.1007/s00021-014-0190-5
- Málek, J., Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations, Electron. Trans. Numer. Anal. 31 (2008), 110-125. (2008) Zbl1182.35182MR2569596
- Málek, J., Mingione, G., Stará, J., Fluids with Pressure Dependent Viscosity, Partial Regularity of Steady Flows, F. Dumortier, et al. Equadiff 2003. Proc. Int. Conf. Differential Equations World Sci. Publ., Hackensack 380-385 (2005). (2005) Zbl1101.76021MR2185057
- Málek, J., Nečas, J., Rajagopal, K. R., 10.1007/s00205-002-0219-4, Arch. Ration. Mech. Anal. 165 (2002), 243-269. (2002) Zbl1022.76011MR1941479DOI10.1007/s00205-002-0219-4
- Roubíček, T., Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics 153 Birkhäuser, Basel (2005). (2005) Zbl1087.35002MR2176645
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.