Summation equations with sign changing kernels and applications to discrete fractional boundary value problems

Christopher S. Goodrich

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 2, page 201-229
  • ISSN: 0010-2628

Abstract

top
We consider the summation equation, for t [ μ - 2 , μ + b ] μ - 2 , y ( t ) = γ 1 ( t ) H 1 i = 1 n a i y ξ i + γ 2 ( t ) H 2 i = 1 m b i y ζ i + λ s = 0 b G ( t , s ) f ( s + μ - 1 , y ( s + μ - 1 ) ) in the case where the map ( t , s ) G ( t , s ) may change sign; here μ ( 1 , 2 ] is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that G is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions H 1 and H 2 . Finally, as an application of the abstract existence result, we demonstrate that by choosing the maps t γ 1 ( t ) , γ 2 ( t ) in particular ways, we can recover the existence of at least one positive solution to various discrete fractional- or integer-order boundary value problems possessing Green’s functions that change sign.

How to cite

top

Goodrich, Christopher S.. "Summation equations with sign changing kernels and applications to discrete fractional boundary value problems." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 201-229. <http://eudml.org/doc/280127>.

@article{Goodrich2016,
abstract = {We consider the summation equation, for $t\in [\mu -2,\mu +b]_\{\mathbb \{N\}_\{\mu -2\}\}$, \begin\{align*\} y(t)=\gamma \_1(t)H\_1\left(\sum \_\{i=1\}^\{n\}a\_iy\left(\xi \_i\right)\right) & + \gamma \_2(t)H\_2\left(\sum \_\{i=1\}^\{m\}b\_iy\left(\zeta \_i\right)\right) &+ \lambda \sum \_\{s=0\}^\{b\}G(t,s)f(s+\mu -1,y(s+\mu -1)) \end\{align*\} in the case where the map $(t,s)\mapsto G(t,s)$ may change sign; here $\mu \in (1,2]$ is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that $G$ is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions $H_1$ and $H_2$. Finally, as an application of the abstract existence result, we demonstrate that by choosing the maps $t\mapsto \gamma _1(t)$, $\gamma _2(t)$ in particular ways, we can recover the existence of at least one positive solution to various discrete fractional- or integer-order boundary value problems possessing Green’s functions that change sign.},
author = {Goodrich, Christopher S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {summation equation; sign-changing kernel; discrete fractional calculus; positive solution; nonlocal boundary condition},
language = {eng},
number = {2},
pages = {201-229},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Summation equations with sign changing kernels and applications to discrete fractional boundary value problems},
url = {http://eudml.org/doc/280127},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Goodrich, Christopher S.
TI - Summation equations with sign changing kernels and applications to discrete fractional boundary value problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 201
EP - 229
AB - We consider the summation equation, for $t\in [\mu -2,\mu +b]_{\mathbb {N}_{\mu -2}}$, \begin{align*} y(t)=\gamma _1(t)H_1\left(\sum _{i=1}^{n}a_iy\left(\xi _i\right)\right) & + \gamma _2(t)H_2\left(\sum _{i=1}^{m}b_iy\left(\zeta _i\right)\right) &+ \lambda \sum _{s=0}^{b}G(t,s)f(s+\mu -1,y(s+\mu -1)) \end{align*} in the case where the map $(t,s)\mapsto G(t,s)$ may change sign; here $\mu \in (1,2]$ is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that $G$ is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions $H_1$ and $H_2$. Finally, as an application of the abstract existence result, we demonstrate that by choosing the maps $t\mapsto \gamma _1(t)$, $\gamma _2(t)$ in particular ways, we can recover the existence of at least one positive solution to various discrete fractional- or integer-order boundary value problems possessing Green’s functions that change sign.
LA - eng
KW - summation equation; sign-changing kernel; discrete fractional calculus; positive solution; nonlocal boundary condition
UR - http://eudml.org/doc/280127
ER -

References

top
  1. Anderson D.R., 10.1016/j.jmaa.2013.06.025, J. Math. Anal. Appl. 408 (2013), 318–323. Zbl1314.34048MR3079969DOI10.1016/j.jmaa.2013.06.025
  2. Atici F.M., Acar N., 10.2298/AADM130828020A, Appl. Anal. Discrete Math. 7 (2013), 343–353. Zbl1299.39001MR3135934DOI10.2298/AADM130828020A
  3. Atici F.M., Eloe P.W., A transform method in discrete fractional calculus, Int. J. Difference Equ. 2 (2007), 165–176. MR2493595
  4. Atici F.M., Eloe P.W., Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. (2009), Special Edition I, 12 pp. Zbl1189.39004MR2558828
  5. Atici F.M., Eloe P.W., 10.1090/S0002-9939-08-09626-3, Proc. Amer. Math. Soc. 137 (2009), 981–989. Zbl1166.39005MR2457438DOI10.1090/S0002-9939-08-09626-3
  6. Atici F.M., Eloe P.W., 10.1080/10236190903029241, J. Difference Equ. Appl. 17 (2011), 445–456. Zbl1215.39002MR2783359DOI10.1080/10236190903029241
  7. Atici F.M., Eloe P.W., 10.1216/RMJ-2011-41-2-353, Rocky Mountain J. Math. 41 (2011), 353–370. Zbl1218.39003MR2794443DOI10.1216/RMJ-2011-41-2-353
  8. Atici F.M., Eloe P.W., 10.1016/j.camwa.2011.11.029, Comput. Math. Appl. 64 (2012), 3193–3200. Zbl1268.26029MR2989347DOI10.1016/j.camwa.2011.11.029
  9. Atici F.M., Şengül S., 10.1016/j.jmaa.2010.02.009, J. Math. Anal. Appl. 369 (2010), 1–9. Zbl1204.39004MR2643839DOI10.1016/j.jmaa.2010.02.009
  10. Atici F.M., Uyanik M., 10.2298/AADM150218007A, Appl. Anal. Discrete Math. 9 (2015), 139–149. MR3362702DOI10.2298/AADM150218007A
  11. Baoguo J., Erbe L., Goodrich C.S., Peterson A., The relation between nabla fractional differences and nabla integer differences, Filmoat(to appear). 
  12. Baoguo J., Erbe L., Goodrich C.S., Peterson A., Monotonicity results for delta fractional differences revisited, Math. Slovaca(to appear). 
  13. Bastos N.R.O., Mozyrska D., Torres D.F.M., Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform, Int. J. Math. Comput. 11 (2011), 1–9. MR2800417
  14. Dahal R., Duncan D., Goodrich C.S., 10.1080/10236198.2013.856073, J. Difference Equ. Appl. 20 (2014), 473–491. Zbl1319.39002MR3173559DOI10.1080/10236198.2013.856073
  15. Dahal R., Goodrich C.S., 10.1007/s00013-014-0620-x, Arch. Math. (Basel) 102 (2014), 293–299. Zbl1330.39022MR3181719DOI10.1007/s00013-014-0620-x
  16. Dahal R., Goodrich C.S., 10.1007/s00013-014-0620-x, (2014), 293–299”, Arch. Math. (Basel) 104 (2015), 599–600. MR3181719DOI10.1007/s00013-014-0620-x
  17. Erbe L., Peterson A., 10.1016/S0895-7177(00)00154-0, Math. Comput. Modelling 32 (2000), 571–585. Zbl0963.34020MR1791165DOI10.1016/S0895-7177(00)00154-0
  18. Erbe L., Peterson A., 10.1080/10236190008808220, J. Difference Equ. Appl. 6 (2000), 165–191. Zbl0949.34015MR1760156DOI10.1080/10236190008808220
  19. Ferreira R.A.C., Nontrivial solutions for fractional q -difference boundary value problems, Electron. J. Qual. Theory Differ. Equ. (2010), 10 pp. Zbl1207.39010MR2740675
  20. Ferreira R.A.C., 10.1016/j.camwa.2010.11.012, Comput. Math. Appl. 61 (2011), 367–373. Zbl1216.39013MR2754144DOI10.1016/j.camwa.2010.11.012
  21. Ferreira R.A.C., 10.1090/S0002-9939-2012-11533-3, Proc. Amer. Math. Soc. 140 (2012), 1605–1612. Zbl1243.26012MR2869144DOI10.1090/S0002-9939-2012-11533-3
  22. Ferreira R.A.C., 10.1080/10236198.2012.682577, J. Difference Equ. Appl. 19 (2013), 712–718. Zbl1276.26013MR3049050DOI10.1080/10236198.2012.682577
  23. Ferreira R.A.C., Goodrich C.S., Positive solution for a discrete fractional periodic boundary value problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19 (2012), 545–557. Zbl1268.26010MR3058228
  24. Ferreira R.A.C., Torres D.F.M., 10.2298/AADM110131002F, Appl. Anal. Discrete Math. 5 (2011), 110–121. Zbl1289.39007MR2809039DOI10.2298/AADM110131002F
  25. Gao L., Sun J.P., Positive solutions of a third-order three-point BVP with sign-changing Green's function, Math. Probl. Eng. (2014), Article ID 406815, 6 pages. MR3268274
  26. Goodrich C.S., Solutions to a discrete right-focal boundary value problem, Int. J. Difference Equ. 5 (2010), 195–216. MR2771325
  27. Goodrich C.S., 10.1016/j.jmaa.2011.06.022, J. Math. Anal. Appl. 385 (2012), 111–124. Zbl1236.39008MR2832079DOI10.1016/j.jmaa.2011.06.022
  28. Goodrich C.S., 10.1080/10236198.2010.503240, J. Difference Equ. Appl. 18 (2012), 397–415. Zbl1253.26010MR2901829DOI10.1080/10236198.2010.503240
  29. Goodrich C.S., 10.1007/s00013-012-0463-2, Arch. Math. (Basel) 99 (2012), 509–518. Zbl1263.26016MR3001554DOI10.1007/s00013-012-0463-2
  30. Goodrich C.S., 10.1080/10236198.2013.775259, J. Difference Equ. Appl. 19 (2013), 1758–1780. MR3173516DOI10.1080/10236198.2013.775259
  31. Goodrich C.S., 10.1016/j.aml.2014.04.013, Appl. Math. Lett. 35 (2014), 58–62. Zbl1314.26010MR3212846DOI10.1016/j.aml.2014.04.013
  32. Goodrich C.S., An existence result for systems of second-order boundary value problems with nonlinear boundary conditions, Dynam. Systems Appl. 23 (2014), 601–618. Zbl1310.34035MR3241607
  33. Goodrich C.S., Semipositone boundary value problems with nonlocal, nonlinear boundary conditions, Adv. Differential Equations 20 (2015), 117–142. Zbl1318.34034MR3297781
  34. Goodrich C.S., 10.1016/j.aml.2014.10.010, Appl. Math. Lett. 41 (2015), 17–22. Zbl1312.34050MR3282393DOI10.1016/j.aml.2014.10.010
  35. Goodrich C.S., 10.1080/10236198.2015.1013537, J. Difference Equ. Appl. 21 (2015), 437–453. Zbl1320.39001MR3334521DOI10.1080/10236198.2015.1013537
  36. Goodrich C.S., 10.1017/S0013091514000108, Proc. Edinb. Math. Soc. (2) 58 (2015), 421–439. Zbl1322.34038MR3341447DOI10.1017/S0013091514000108
  37. Goodrich C.S., 10.1080/10236198.2015.1125896, J. Difference Equ. Appl., doi: 10.1080/10236198.2015.1125896. MR3516118DOI10.1080/10236198.2015.1125896
  38. Goodrich C.S., Peterson A.C., 10.1007/978-3-319-25562-0, Springer, Cham, 2015, doi: 10.1007/978-3-319-25562-0. MR3445243DOI10.1007/978-3-319-25562-0
  39. Graef J., Kong L., Wang H., 10.1016/j.aml.2007.02.019, Appl. Math. Lett. 21 (2008), 176–180. Zbl1135.34307MR2426975DOI10.1016/j.aml.2007.02.019
  40. Graef J., Kong L., 10.1016/j.amc.2012.03.006, Appl. Math. Comput. 218 (2012), 9682–9689. Zbl1254.34010MR2916148DOI10.1016/j.amc.2012.03.006
  41. Holm M., 10.4067/S0719-06462011000300009, Cubo 13 (2011), 153–184. MR2895482DOI10.4067/S0719-06462011000300009
  42. Infante G., Nonlocal boundary value problems with two nonlinear boundary conditions, Commun. Appl. Anal. 12 (2008), 279–288. Zbl1198.34025MR2499284
  43. Infante G., Pietramala P., Tenuta M., 10.1016/j.cnsns.2013.11.009, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2245–2251. MR3157933DOI10.1016/j.cnsns.2013.11.009
  44. Infante G., Pietramala P., 10.1002/mma.2957, Math. Methods Appl. Sci. 37 (2014), 2080–2090. Zbl1312.34060MR3248749DOI10.1002/mma.2957
  45. Jankowski T., 10.1016/j.amc.2014.04.080, Appl. Math. Comput. 241 (2014), 200–213. Zbl1334.34058MR3223422DOI10.1016/j.amc.2014.04.080
  46. Jia B., Erbe L., Peterson A., 10.1007/s00013-015-0765-2, Arch. Math. (Basel) 104 (2015), 589–597. Zbl1327.39011MR3350348DOI10.1007/s00013-015-0765-2
  47. Jia B., Erbe L., Peterson A., 10.1080/10236198.2015.1011630, J. Difference Equ. Appl. 21 (2015), 360–373. Zbl1320.39003MR3326277DOI10.1080/10236198.2015.1011630
  48. Jia B., Erbe L., Peterson A., Some relations between the Caputo fractional difference operators and integer order differences, Electron. J. Differential Equations (2015), No. 163, pp. 1–7. Zbl1321.39024MR3375994
  49. Karakostas G.L., Existence of solutions for an n -dimensional operator equation and applications to BVPs, Electron. J. Differential Equations (2014), No. 71, 17 pp. Zbl1298.34118MR3193977
  50. Ma R., 10.1016/j.na.2010.10.043, Nonlinear Anal. 74 (2011), 1714–1720. MR2764373DOI10.1016/j.na.2010.10.043
  51. Picone M., Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1908), 1–95. MR1556636
  52. Sun J.P., Zhao J., Multiple positive solutions for a third-order three-point BVP with sign-changing Green's function, Electron. J. Differential Equations (2012), No. 118, pp. 1–7. Zbl1260.34049MR2967183
  53. Wang J., Gao C., Positive solutions of discrete third-order boundary value problems with sign-changing Green's function, Adv. Difference Equ. (2015), 10 pp. MR3315295
  54. Whyburn W.M., 10.1090/S0002-9904-1942-07760-3, Bull. Amer. Math. Soc. 48 (1942), 692–704. Zbl0061.17904MR0007192DOI10.1090/S0002-9904-1942-07760-3
  55. Wu G., Baleanu D., 10.1007/s11071-013-1065-7, Nonlinear Dyn. 75 (2014), 283–287. MR3144852DOI10.1007/s11071-013-1065-7
  56. Yang Z., 10.1016/j.na.2005.04.030, Nonlinear Anal. 62 (2005), 1251–1265. Zbl1089.34022MR2154107DOI10.1016/j.na.2005.04.030
  57. Yang Z., 10.1016/j.jmaa.2005.09.002, J. Math. Anal. Appl. 321 (2006), 751–765. Zbl1106.34014MR2241153DOI10.1016/j.jmaa.2005.09.002
  58. Zeidler E., Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems, Springer, New York, 1986. Zbl0583.47050MR0816732
  59. Zhang P., Liu L., Wu Y., Existence and uniqueness of solution to nonlinear boundary value problems with sign-changing Green's function, Abstr. Appl. Anal. (2013), Article ID 640183, 7 pp. MR3121401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.