Summation equations with sign changing kernels and applications to discrete fractional boundary value problems
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 2, page 201-229
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGoodrich, Christopher S.. "Summation equations with sign changing kernels and applications to discrete fractional boundary value problems." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 201-229. <http://eudml.org/doc/280127>.
@article{Goodrich2016,
abstract = {We consider the summation equation, for $t\in [\mu -2,\mu +b]_\{\mathbb \{N\}_\{\mu -2\}\}$, \begin\{align*\} y(t)=\gamma \_1(t)H\_1\left(\sum \_\{i=1\}^\{n\}a\_iy\left(\xi \_i\right)\right) & + \gamma \_2(t)H\_2\left(\sum \_\{i=1\}^\{m\}b\_iy\left(\zeta \_i\right)\right) &+ \lambda \sum \_\{s=0\}^\{b\}G(t,s)f(s+\mu -1,y(s+\mu -1)) \end\{align*\}
in the case where the map $(t,s)\mapsto G(t,s)$ may change sign; here $\mu \in (1,2]$ is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that $G$ is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions $H_1$ and $H_2$. Finally, as an application of the abstract existence result, we demonstrate that by choosing the maps $t\mapsto \gamma _1(t)$, $\gamma _2(t)$ in particular ways, we can recover the existence of at least one positive solution to various discrete fractional- or integer-order boundary value problems possessing Green’s functions that change sign.},
author = {Goodrich, Christopher S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {summation equation; sign-changing kernel; discrete fractional calculus; positive solution; nonlocal boundary condition},
language = {eng},
number = {2},
pages = {201-229},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Summation equations with sign changing kernels and applications to discrete fractional boundary value problems},
url = {http://eudml.org/doc/280127},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Goodrich, Christopher S.
TI - Summation equations with sign changing kernels and applications to discrete fractional boundary value problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 201
EP - 229
AB - We consider the summation equation, for $t\in [\mu -2,\mu +b]_{\mathbb {N}_{\mu -2}}$, \begin{align*} y(t)=\gamma _1(t)H_1\left(\sum _{i=1}^{n}a_iy\left(\xi _i\right)\right) & + \gamma _2(t)H_2\left(\sum _{i=1}^{m}b_iy\left(\zeta _i\right)\right) &+ \lambda \sum _{s=0}^{b}G(t,s)f(s+\mu -1,y(s+\mu -1)) \end{align*}
in the case where the map $(t,s)\mapsto G(t,s)$ may change sign; here $\mu \in (1,2]$ is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that $G$ is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions $H_1$ and $H_2$. Finally, as an application of the abstract existence result, we demonstrate that by choosing the maps $t\mapsto \gamma _1(t)$, $\gamma _2(t)$ in particular ways, we can recover the existence of at least one positive solution to various discrete fractional- or integer-order boundary value problems possessing Green’s functions that change sign.
LA - eng
KW - summation equation; sign-changing kernel; discrete fractional calculus; positive solution; nonlocal boundary condition
UR - http://eudml.org/doc/280127
ER -
References
top- Anderson D.R., 10.1016/j.jmaa.2013.06.025, J. Math. Anal. Appl. 408 (2013), 318–323. Zbl1314.34048MR3079969DOI10.1016/j.jmaa.2013.06.025
- Atici F.M., Acar N., 10.2298/AADM130828020A, Appl. Anal. Discrete Math. 7 (2013), 343–353. Zbl1299.39001MR3135934DOI10.2298/AADM130828020A
- Atici F.M., Eloe P.W., A transform method in discrete fractional calculus, Int. J. Difference Equ. 2 (2007), 165–176. MR2493595
- Atici F.M., Eloe P.W., Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. (2009), Special Edition I, 12 pp. Zbl1189.39004MR2558828
- Atici F.M., Eloe P.W., 10.1090/S0002-9939-08-09626-3, Proc. Amer. Math. Soc. 137 (2009), 981–989. Zbl1166.39005MR2457438DOI10.1090/S0002-9939-08-09626-3
- Atici F.M., Eloe P.W., 10.1080/10236190903029241, J. Difference Equ. Appl. 17 (2011), 445–456. Zbl1215.39002MR2783359DOI10.1080/10236190903029241
- Atici F.M., Eloe P.W., 10.1216/RMJ-2011-41-2-353, Rocky Mountain J. Math. 41 (2011), 353–370. Zbl1218.39003MR2794443DOI10.1216/RMJ-2011-41-2-353
- Atici F.M., Eloe P.W., 10.1016/j.camwa.2011.11.029, Comput. Math. Appl. 64 (2012), 3193–3200. Zbl1268.26029MR2989347DOI10.1016/j.camwa.2011.11.029
- Atici F.M., Şengül S., 10.1016/j.jmaa.2010.02.009, J. Math. Anal. Appl. 369 (2010), 1–9. Zbl1204.39004MR2643839DOI10.1016/j.jmaa.2010.02.009
- Atici F.M., Uyanik M., 10.2298/AADM150218007A, Appl. Anal. Discrete Math. 9 (2015), 139–149. MR3362702DOI10.2298/AADM150218007A
- Baoguo J., Erbe L., Goodrich C.S., Peterson A., The relation between nabla fractional differences and nabla integer differences, Filmoat(to appear).
- Baoguo J., Erbe L., Goodrich C.S., Peterson A., Monotonicity results for delta fractional differences revisited, Math. Slovaca(to appear).
- Bastos N.R.O., Mozyrska D., Torres D.F.M., Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform, Int. J. Math. Comput. 11 (2011), 1–9. MR2800417
- Dahal R., Duncan D., Goodrich C.S., 10.1080/10236198.2013.856073, J. Difference Equ. Appl. 20 (2014), 473–491. Zbl1319.39002MR3173559DOI10.1080/10236198.2013.856073
- Dahal R., Goodrich C.S., 10.1007/s00013-014-0620-x, Arch. Math. (Basel) 102 (2014), 293–299. Zbl1330.39022MR3181719DOI10.1007/s00013-014-0620-x
- Dahal R., Goodrich C.S., 10.1007/s00013-014-0620-x, (2014), 293–299”, Arch. Math. (Basel) 104 (2015), 599–600. MR3181719DOI10.1007/s00013-014-0620-x
- Erbe L., Peterson A., 10.1016/S0895-7177(00)00154-0, Math. Comput. Modelling 32 (2000), 571–585. Zbl0963.34020MR1791165DOI10.1016/S0895-7177(00)00154-0
- Erbe L., Peterson A., 10.1080/10236190008808220, J. Difference Equ. Appl. 6 (2000), 165–191. Zbl0949.34015MR1760156DOI10.1080/10236190008808220
- Ferreira R.A.C., Nontrivial solutions for fractional -difference boundary value problems, Electron. J. Qual. Theory Differ. Equ. (2010), 10 pp. Zbl1207.39010MR2740675
- Ferreira R.A.C., 10.1016/j.camwa.2010.11.012, Comput. Math. Appl. 61 (2011), 367–373. Zbl1216.39013MR2754144DOI10.1016/j.camwa.2010.11.012
- Ferreira R.A.C., 10.1090/S0002-9939-2012-11533-3, Proc. Amer. Math. Soc. 140 (2012), 1605–1612. Zbl1243.26012MR2869144DOI10.1090/S0002-9939-2012-11533-3
- Ferreira R.A.C., 10.1080/10236198.2012.682577, J. Difference Equ. Appl. 19 (2013), 712–718. Zbl1276.26013MR3049050DOI10.1080/10236198.2012.682577
- Ferreira R.A.C., Goodrich C.S., Positive solution for a discrete fractional periodic boundary value problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19 (2012), 545–557. Zbl1268.26010MR3058228
- Ferreira R.A.C., Torres D.F.M., 10.2298/AADM110131002F, Appl. Anal. Discrete Math. 5 (2011), 110–121. Zbl1289.39007MR2809039DOI10.2298/AADM110131002F
- Gao L., Sun J.P., Positive solutions of a third-order three-point BVP with sign-changing Green's function, Math. Probl. Eng. (2014), Article ID 406815, 6 pages. MR3268274
- Goodrich C.S., Solutions to a discrete right-focal boundary value problem, Int. J. Difference Equ. 5 (2010), 195–216. MR2771325
- Goodrich C.S., 10.1016/j.jmaa.2011.06.022, J. Math. Anal. Appl. 385 (2012), 111–124. Zbl1236.39008MR2832079DOI10.1016/j.jmaa.2011.06.022
- Goodrich C.S., 10.1080/10236198.2010.503240, J. Difference Equ. Appl. 18 (2012), 397–415. Zbl1253.26010MR2901829DOI10.1080/10236198.2010.503240
- Goodrich C.S., 10.1007/s00013-012-0463-2, Arch. Math. (Basel) 99 (2012), 509–518. Zbl1263.26016MR3001554DOI10.1007/s00013-012-0463-2
- Goodrich C.S., 10.1080/10236198.2013.775259, J. Difference Equ. Appl. 19 (2013), 1758–1780. MR3173516DOI10.1080/10236198.2013.775259
- Goodrich C.S., 10.1016/j.aml.2014.04.013, Appl. Math. Lett. 35 (2014), 58–62. Zbl1314.26010MR3212846DOI10.1016/j.aml.2014.04.013
- Goodrich C.S., An existence result for systems of second-order boundary value problems with nonlinear boundary conditions, Dynam. Systems Appl. 23 (2014), 601–618. Zbl1310.34035MR3241607
- Goodrich C.S., Semipositone boundary value problems with nonlocal, nonlinear boundary conditions, Adv. Differential Equations 20 (2015), 117–142. Zbl1318.34034MR3297781
- Goodrich C.S., 10.1016/j.aml.2014.10.010, Appl. Math. Lett. 41 (2015), 17–22. Zbl1312.34050MR3282393DOI10.1016/j.aml.2014.10.010
- Goodrich C.S., 10.1080/10236198.2015.1013537, J. Difference Equ. Appl. 21 (2015), 437–453. Zbl1320.39001MR3334521DOI10.1080/10236198.2015.1013537
- Goodrich C.S., 10.1017/S0013091514000108, Proc. Edinb. Math. Soc. (2) 58 (2015), 421–439. Zbl1322.34038MR3341447DOI10.1017/S0013091514000108
- Goodrich C.S., 10.1080/10236198.2015.1125896, J. Difference Equ. Appl., doi: 10.1080/10236198.2015.1125896. MR3516118DOI10.1080/10236198.2015.1125896
- Goodrich C.S., Peterson A.C., 10.1007/978-3-319-25562-0, Springer, Cham, 2015, doi: 10.1007/978-3-319-25562-0. MR3445243DOI10.1007/978-3-319-25562-0
- Graef J., Kong L., Wang H., 10.1016/j.aml.2007.02.019, Appl. Math. Lett. 21 (2008), 176–180. Zbl1135.34307MR2426975DOI10.1016/j.aml.2007.02.019
- Graef J., Kong L., 10.1016/j.amc.2012.03.006, Appl. Math. Comput. 218 (2012), 9682–9689. Zbl1254.34010MR2916148DOI10.1016/j.amc.2012.03.006
- Holm M., 10.4067/S0719-06462011000300009, Cubo 13 (2011), 153–184. MR2895482DOI10.4067/S0719-06462011000300009
- Infante G., Nonlocal boundary value problems with two nonlinear boundary conditions, Commun. Appl. Anal. 12 (2008), 279–288. Zbl1198.34025MR2499284
- Infante G., Pietramala P., Tenuta M., 10.1016/j.cnsns.2013.11.009, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2245–2251. MR3157933DOI10.1016/j.cnsns.2013.11.009
- Infante G., Pietramala P., 10.1002/mma.2957, Math. Methods Appl. Sci. 37 (2014), 2080–2090. Zbl1312.34060MR3248749DOI10.1002/mma.2957
- Jankowski T., 10.1016/j.amc.2014.04.080, Appl. Math. Comput. 241 (2014), 200–213. Zbl1334.34058MR3223422DOI10.1016/j.amc.2014.04.080
- Jia B., Erbe L., Peterson A., 10.1007/s00013-015-0765-2, Arch. Math. (Basel) 104 (2015), 589–597. Zbl1327.39011MR3350348DOI10.1007/s00013-015-0765-2
- Jia B., Erbe L., Peterson A., 10.1080/10236198.2015.1011630, J. Difference Equ. Appl. 21 (2015), 360–373. Zbl1320.39003MR3326277DOI10.1080/10236198.2015.1011630
- Jia B., Erbe L., Peterson A., Some relations between the Caputo fractional difference operators and integer order differences, Electron. J. Differential Equations (2015), No. 163, pp. 1–7. Zbl1321.39024MR3375994
- Karakostas G.L., Existence of solutions for an -dimensional operator equation and applications to BVPs, Electron. J. Differential Equations (2014), No. 71, 17 pp. Zbl1298.34118MR3193977
- Ma R., 10.1016/j.na.2010.10.043, Nonlinear Anal. 74 (2011), 1714–1720. MR2764373DOI10.1016/j.na.2010.10.043
- Picone M., Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1908), 1–95. MR1556636
- Sun J.P., Zhao J., Multiple positive solutions for a third-order three-point BVP with sign-changing Green's function, Electron. J. Differential Equations (2012), No. 118, pp. 1–7. Zbl1260.34049MR2967183
- Wang J., Gao C., Positive solutions of discrete third-order boundary value problems with sign-changing Green's function, Adv. Difference Equ. (2015), 10 pp. MR3315295
- Whyburn W.M., 10.1090/S0002-9904-1942-07760-3, Bull. Amer. Math. Soc. 48 (1942), 692–704. Zbl0061.17904MR0007192DOI10.1090/S0002-9904-1942-07760-3
- Wu G., Baleanu D., 10.1007/s11071-013-1065-7, Nonlinear Dyn. 75 (2014), 283–287. MR3144852DOI10.1007/s11071-013-1065-7
- Yang Z., 10.1016/j.na.2005.04.030, Nonlinear Anal. 62 (2005), 1251–1265. Zbl1089.34022MR2154107DOI10.1016/j.na.2005.04.030
- Yang Z., 10.1016/j.jmaa.2005.09.002, J. Math. Anal. Appl. 321 (2006), 751–765. Zbl1106.34014MR2241153DOI10.1016/j.jmaa.2005.09.002
- Zeidler E., Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems, Springer, New York, 1986. Zbl0583.47050MR0816732
- Zhang P., Liu L., Wu Y., Existence and uniqueness of solution to nonlinear boundary value problems with sign-changing Green's function, Abstr. Appl. Anal. (2013), Article ID 640183, 7 pp. MR3121401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.