The σ -property in C ( X )

Anthony W. Hager

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 2, page 231-239
  • ISSN: 0010-2628

Abstract

top
The σ -property of a Riesz space (real vector lattice) B is: For each sequence { b n } of positive elements of B , there is a sequence { λ n } of positive reals, and b B , with λ n b n b for each n . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “ σ ” obtains for a Riesz space of continuous real-valued functions C ( X ) . A basic result is: For discrete X , C ( X ) has σ iff the cardinal | X | < 𝔟 , Rothberger’s bounding number. Consequences and generalizations use the Lindelöf number L ( X ) : For a P -space X , if L ( X ) 𝔟 , then C ( X ) has σ . For paracompact X , if C ( X ) has σ , then L ( X ) 𝔟 , and conversely if X is also locally compact. For metrizable X , if C ( X ) has σ , then X is locally compact.

How to cite

top

Hager, Anthony W.. "The $\sigma $-property in $C(X)$." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 231-239. <http://eudml.org/doc/280140>.

@article{Hager2016,
abstract = {The $\sigma $-property of a Riesz space (real vector lattice) $B$ is: For each sequence $\lbrace b_\{n\}\rbrace $ of positive elements of $B$, there is a sequence $\lbrace \lambda _\{n\}\rbrace $ of positive reals, and $b\in B$, with $\lambda _\{n\}b_\{n\}\le b$ for each $n$. This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “$\sigma $” obtains for a Riesz space of continuous real-valued functions $C(X)$. A basic result is: For discrete $X$, $C(X)$ has $\sigma $ iff the cardinal $|X|< \mathfrak \{b\}$, Rothberger’s bounding number. Consequences and generalizations use the Lindelöf number $L(X)$: For a $P$-space $X$, if $L(X)\le \mathfrak \{b\}$, then $C(X)$ has $\sigma $. For paracompact $X$, if $C(X)$ has $\sigma $, then $L(X)\le \mathfrak \{b\}$, and conversely if $X$ is also locally compact. For metrizable $X$, if $C(X)$ has $\sigma $, then $X$is locally compact.},
author = {Hager, Anthony W.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Riesz space; $\sigma $-property; bounding number; $P$-space; paracompact; locally compact},
language = {eng},
number = {2},
pages = {231-239},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The $\sigma $-property in $C(X)$},
url = {http://eudml.org/doc/280140},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Hager, Anthony W.
TI - The $\sigma $-property in $C(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 231
EP - 239
AB - The $\sigma $-property of a Riesz space (real vector lattice) $B$ is: For each sequence $\lbrace b_{n}\rbrace $ of positive elements of $B$, there is a sequence $\lbrace \lambda _{n}\rbrace $ of positive reals, and $b\in B$, with $\lambda _{n}b_{n}\le b$ for each $n$. This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “$\sigma $” obtains for a Riesz space of continuous real-valued functions $C(X)$. A basic result is: For discrete $X$, $C(X)$ has $\sigma $ iff the cardinal $|X|< \mathfrak {b}$, Rothberger’s bounding number. Consequences and generalizations use the Lindelöf number $L(X)$: For a $P$-space $X$, if $L(X)\le \mathfrak {b}$, then $C(X)$ has $\sigma $. For paracompact $X$, if $C(X)$ has $\sigma $, then $L(X)\le \mathfrak {b}$, and conversely if $X$ is also locally compact. For metrizable $X$, if $C(X)$ has $\sigma $, then $X$is locally compact.
LA - eng
KW - Riesz space; $\sigma $-property; bounding number; $P$-space; paracompact; locally compact
UR - http://eudml.org/doc/280140
ER -

References

top
  1. Ball R., Gochev V., Hager A., Todorčević S., Zoble S., Topological group criterion for C ( X ) in compact-open-like topologies I., Topology Appl. 156 (2009), 710–720. Zbl1166.54007MR2492956
  2. Blass A., Jech T., 10.1090/S0002-9939-1986-0857955-3, Proc. Amer. Math. Society 90 (1986), 524–526. Zbl0601.54004MR0857955DOI10.1090/S0002-9939-1986-0857955-3
  3. Dodds, Theresa K.Y. Chow, 10.1090/S0002-9947-1974-0336282-3, Trans. Amer. Math. Soc. 187 (1974), 365–375. MR0336282DOI10.1090/S0002-9947-1974-0336282-3
  4. van Douwen E., The integers and topology, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–1676. Zbl0561.54004MR0776622
  5. Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  6. Gillman L., Jerison M., Rings of Continuous Functions, The University Series in Higher Mathematics, Van Nostrand, Princeton, N.J.-Toronto-London-New York, 1960. Zbl0327.46040MR0116199
  7. Hager A., van Mill J., Egoroff, σ , and convergence properties in some archimedean vector lattices, Studia Math. 231 (2015), 269–285. MR3471054
  8. Hager A., Raphael R., 10.1016/j.indag.2015.07.005, Indag. Math., 27 (2016), 75–84. MR3437737DOI10.1016/j.indag.2015.07.005
  9. Holbrook J., 10.1090/S0002-9947-1968-0228979-8, Trans. Amer. Math. Soc. 132 (1968), 67–77. Zbl0169.14802MR0228979DOI10.1090/S0002-9947-1968-0228979-8
  10. Jech T., 10.1090/S0002-9939-1980-0565368-1, Proc. Amer. Math. Soc. 79 (1980), 341–342. Zbl0441.04002MR0565368DOI10.1090/S0002-9939-1980-0565368-1
  11. Jech T., Set Theory, third millennium edition, Springer, Berlin, 2003. Zbl1007.03002MR1940513
  12. Luxemburg W.A.J., Zaanen A.C., Riesz Spaces, Vol. I, North-Holland Mathematical Library, North-Holland, Amsterdam-London, 1971. Zbl0231.46014MR0511676

NotesEmbed ?

top

You must be logged in to post comments.