On a question of
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 2, page 253-260
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topOlfati, A. R.. "On a question of $C_c(X)$." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 253-260. <http://eudml.org/doc/280142>.
@article{Olfati2016,
abstract = {In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that $C_c(X)$ is isomorphic to some ring of continuous functions if and only if $\upsilon _0 X$ is functionally countable. For a strongly zero-dimensional space $X$, this is equivalent to say that $X$ is functionally countable. Hence for every $P$-space it is equivalent to pseudo-$\aleph _0$-compactness.},
author = {Olfati, A. R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {zero-dimensional space; strongly zero-dimensional space; $\mathbb \{N\}$-compact space; Banaschewski compactification; character; ring homomorphism; functionally countable subring; functional separability},
language = {eng},
number = {2},
pages = {253-260},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a question of $C_c(X)$},
url = {http://eudml.org/doc/280142},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Olfati, A. R.
TI - On a question of $C_c(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 253
EP - 260
AB - In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that $C_c(X)$ is isomorphic to some ring of continuous functions if and only if $\upsilon _0 X$ is functionally countable. For a strongly zero-dimensional space $X$, this is equivalent to say that $X$ is functionally countable. Hence for every $P$-space it is equivalent to pseudo-$\aleph _0$-compactness.
LA - eng
KW - zero-dimensional space; strongly zero-dimensional space; $\mathbb {N}$-compact space; Banaschewski compactification; character; ring homomorphism; functionally countable subring; functional separability
UR - http://eudml.org/doc/280142
ER -
References
top- Barr M., Kennison F., Raphael R., 10.4153/CJM-2007-020-9, Canad. J. Math. 59 (2007), 465–487. MR2319155DOI10.4153/CJM-2007-020-9
- Barr M., Burgess W.D., Raphael R., Ring epimorphisms and , Theory Appl. Categ. 11 (2003), no. 12, 283–308. Zbl1042.54007MR1988400
- Burgess W.D., Raphael R., Compactifications, and ring epimorphisms, Theory Appl. Categ. 16 (2006), no. 21, 558–584. Zbl1115.18001MR2259263
- Bhattacharjee P., Knox M.L., McGovern W.W., 10.4995/agt.2014.3181, Appl. Gen. Topol. 15 (2014), no. 2, 147–154. Zbl1305.54030MR3267269DOI10.4995/agt.2014.3181
- Boulabiar K., 10.4153/CMB-2014-024-3, Canad. Math. Bull. 58 (2015), 7–8. Zbl1312.54006MR3303202DOI10.4153/CMB-2014-024-3
- Engelking R., General Topology, PWN-Polish Sci. Publ., Warsaw, 1977. Zbl0684.54001MR0500780
- Engelking R., Mrówka S., On -compact spaces, Bull. Acad. Polon. Sci. 6 (1958), 429-436. Zbl0083.17402MR0097042
- Ercan Z., Onal S., 10.1090/S0002-9939-05-07930-X, Proc. Amer. Math. Soc. 133 (2005), 3609–3611. Zbl1087.46038MR2163596DOI10.1090/S0002-9939-05-07930-X
- Ghadermazi M., Karamzadeh O.A.S., Namdari M., 10.4171/RSMUP/129-4, Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. Zbl1279.54015MR3090630DOI10.4171/RSMUP/129-4
- Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Mathematics, 43, Springer, New York-Heidelberg, 1976. Zbl0327.46040MR0407579
- Hager A., Kimber C., McGovern W.W., 10.1007/s10587-005-0031-z, Czechoslovak Math. J. 55 (2005), 409–421. Zbl1081.06020MR2137147DOI10.1007/s10587-005-0031-z
- Hušek M., Pulgarín A., as a real -group, Topology Appl. 157 (2010), 1454–1459. Zbl1195.46024MR2610454
- Levy R., Rice M.D., 10.4064/cm-44-2-227-240, Colloq. Math. 44 (1981), 227–240. Zbl0496.54034MR0652582DOI10.4064/cm-44-2-227-240
- Levy R., Matveev M., Functional separability, Comment. Math. Univ. Carolin. 51 (2010), no. 4, 705–711. Zbl1224.54063MR2858271
- Mrówka S., 10.1016/S1385-7258(65)50008-1, Vehr. Nederl. Akad. Wetensch. Sect. I 68 (1965), 74–82. Zbl0139.07404MR0237580DOI10.1016/S1385-7258(65)50008-1
- Mrówka S., Shore S.D., Structures of continuous functions V. On homomorphisms of structures of continuous functions with zero-dimensional compact domain, Vehr. Nederl. Akad. Wetensch. Sect. I 68 (1965), 92–94. MR0237582
- Mrówka S., On -compact spaces II, Bull. Acad. Polon. Sci. 14 (1966), 597–605. Zbl0161.19603
- Mrówka S., 10.1007/BF02394609, Acta. Math. 120 (1968), 161–185. Zbl0179.51202MR0226576DOI10.1007/BF02394609
- Mrówka S., 10.1007/BF01894771, Acta. Math. Acad. Sci. Hungar. 21 (1970), 239–259. Zbl0229.46027MR0269706DOI10.1007/BF01894771
- Nyikos P., 10.1090/S0002-9904-1971-12709-X, Bull. Amer. Math. Soc 77 (1971), 392–396. MR0282336DOI10.1090/S0002-9904-1971-12709-X
- Pelczyński A., Semadeni Z., 10.4064/sm-18-2-211-222, Studia Math. 18 (1959), 211-222. MR0107806DOI10.4064/sm-18-2-211-222
- Porter J.R., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer, New York, 1988. Zbl0652.54016MR0918341
- Rudin W., 10.1090/S0002-9939-1957-0085475-7, Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl0077.31103MR0085475DOI10.1090/S0002-9939-1957-0085475-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.