On a question of C c ( X )

A. R. Olfati

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 2, page 253-260
  • ISSN: 0010-2628

Abstract

top
In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of C ( X ) , Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that C c ( X ) is isomorphic to some ring of continuous functions if and only if υ 0 X is functionally countable. For a strongly zero-dimensional space X , this is equivalent to say that X is functionally countable. Hence for every P -space it is equivalent to pseudo- 0 -compactness.

How to cite

top

Olfati, A. R.. "On a question of $C_c(X)$." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 253-260. <http://eudml.org/doc/280142>.

@article{Olfati2016,
abstract = {In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that $C_c(X)$ is isomorphic to some ring of continuous functions if and only if $\upsilon _0 X$ is functionally countable. For a strongly zero-dimensional space $X$, this is equivalent to say that $X$ is functionally countable. Hence for every $P$-space it is equivalent to pseudo-$\aleph _0$-compactness.},
author = {Olfati, A. R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {zero-dimensional space; strongly zero-dimensional space; $\mathbb \{N\}$-compact space; Banaschewski compactification; character; ring homomorphism; functionally countable subring; functional separability},
language = {eng},
number = {2},
pages = {253-260},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a question of $C_c(X)$},
url = {http://eudml.org/doc/280142},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Olfati, A. R.
TI - On a question of $C_c(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 253
EP - 260
AB - In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that $C_c(X)$ is isomorphic to some ring of continuous functions if and only if $\upsilon _0 X$ is functionally countable. For a strongly zero-dimensional space $X$, this is equivalent to say that $X$ is functionally countable. Hence for every $P$-space it is equivalent to pseudo-$\aleph _0$-compactness.
LA - eng
KW - zero-dimensional space; strongly zero-dimensional space; $\mathbb {N}$-compact space; Banaschewski compactification; character; ring homomorphism; functionally countable subring; functional separability
UR - http://eudml.org/doc/280142
ER -

References

top
  1. Barr M., Kennison F., Raphael R., 10.4153/CJM-2007-020-9, Canad. J. Math. 59 (2007), 465–487. MR2319155DOI10.4153/CJM-2007-020-9
  2. Barr M., Burgess W.D., Raphael R., Ring epimorphisms and C ( X ) , Theory Appl. Categ. 11 (2003), no. 12, 283–308. Zbl1042.54007MR1988400
  3. Burgess W.D., Raphael R., Compactifications, C ( X ) and ring epimorphisms, Theory Appl. Categ. 16 (2006), no. 21, 558–584. Zbl1115.18001MR2259263
  4. Bhattacharjee P., Knox M.L., McGovern W.W., 10.4995/agt.2014.3181, Appl. Gen. Topol. 15 (2014), no. 2, 147–154. Zbl1305.54030MR3267269DOI10.4995/agt.2014.3181
  5. Boulabiar K., 10.4153/CMB-2014-024-3, Canad. Math. Bull. 58 (2015), 7–8. Zbl1312.54006MR3303202DOI10.4153/CMB-2014-024-3
  6. Engelking R., General Topology, PWN-Polish Sci. Publ., Warsaw, 1977. Zbl0684.54001MR0500780
  7. Engelking R., Mrówka S., On E -compact spaces, Bull. Acad. Polon. Sci. 6 (1958), 429-436. Zbl0083.17402MR0097042
  8. Ercan Z., Onal S., 10.1090/S0002-9939-05-07930-X, Proc. Amer. Math. Soc. 133 (2005), 3609–3611. Zbl1087.46038MR2163596DOI10.1090/S0002-9939-05-07930-X
  9. Ghadermazi M., Karamzadeh O.A.S., Namdari M., 10.4171/RSMUP/129-4, Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. Zbl1279.54015MR3090630DOI10.4171/RSMUP/129-4
  10. Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Mathematics, 43, Springer, New York-Heidelberg, 1976. Zbl0327.46040MR0407579
  11. Hager A., Kimber C., McGovern W.W., 10.1007/s10587-005-0031-z, Czechoslovak Math. J. 55 (2005), 409–421. Zbl1081.06020MR2137147DOI10.1007/s10587-005-0031-z
  12. Hušek M., Pulgarín A., C ( X ) as a real -group, Topology Appl. 157 (2010), 1454–1459. Zbl1195.46024MR2610454
  13. Levy R., Rice M.D., 10.4064/cm-44-2-227-240, Colloq. Math. 44 (1981), 227–240. Zbl0496.54034MR0652582DOI10.4064/cm-44-2-227-240
  14. Levy R., Matveev M., Functional separability, Comment. Math. Univ. Carolin. 51 (2010), no. 4, 705–711. Zbl1224.54063MR2858271
  15. Mrówka S., 10.1016/S1385-7258(65)50008-1, Vehr. Nederl. Akad. Wetensch. Sect. I 68 (1965), 74–82. Zbl0139.07404MR0237580DOI10.1016/S1385-7258(65)50008-1
  16. Mrówka S., Shore S.D., Structures of continuous functions V. On homomorphisms of structures of continuous functions with zero-dimensional compact domain, Vehr. Nederl. Akad. Wetensch. Sect. I 68 (1965), 92–94. MR0237582
  17. Mrówka S., On E -compact spaces II, Bull. Acad. Polon. Sci. 14 (1966), 597–605. Zbl0161.19603
  18. Mrówka S., 10.1007/BF02394609, Acta. Math. 120 (1968), 161–185. Zbl0179.51202MR0226576DOI10.1007/BF02394609
  19. Mrówka S., 10.1007/BF01894771, Acta. Math. Acad. Sci. Hungar. 21 (1970), 239–259. Zbl0229.46027MR0269706DOI10.1007/BF01894771
  20. Nyikos P., 10.1090/S0002-9904-1971-12709-X, Bull. Amer. Math. Soc 77 (1971), 392–396. MR0282336DOI10.1090/S0002-9904-1971-12709-X
  21. Pelczyński A., Semadeni Z., 10.4064/sm-18-2-211-222, Studia Math. 18 (1959), 211-222. MR0107806DOI10.4064/sm-18-2-211-222
  22. Porter J.R., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer, New York, 1988. Zbl0652.54016MR0918341
  23. Rudin W., 10.1090/S0002-9939-1957-0085475-7, Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl0077.31103MR0085475DOI10.1090/S0002-9939-1957-0085475-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.