The rigidity theorem for Landsberg hypersurfaces of a Minkowski space
Annales Polonici Mathematici (2012)
- Volume: 104, Issue: 2, page 153-160
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topJin Tang Li. "The rigidity theorem for Landsberg hypersurfaces of a Minkowski space." Annales Polonici Mathematici 104.2 (2012): 153-160. <http://eudml.org/doc/280144>.
@article{JinTangLi2012,
abstract = {Let Mⁿ be a compact Landsberg hypersurface of a Minkowski space $(V^\{n+1\},F̅)$ with constant mean curvature H. Using the Gauss formula for the Chern connection of Finsler submanifolds, we prove that if M is convex, then M is Riemannian with constant curvature.},
author = {Jin Tang Li},
journal = {Annales Polonici Mathematici},
keywords = {Finsler structure; Minkowski space; Landsberg hypersurfaces; constant mean curvature; Chern connection; convexity},
language = {eng},
number = {2},
pages = {153-160},
title = {The rigidity theorem for Landsberg hypersurfaces of a Minkowski space},
url = {http://eudml.org/doc/280144},
volume = {104},
year = {2012},
}
TY - JOUR
AU - Jin Tang Li
TI - The rigidity theorem for Landsberg hypersurfaces of a Minkowski space
JO - Annales Polonici Mathematici
PY - 2012
VL - 104
IS - 2
SP - 153
EP - 160
AB - Let Mⁿ be a compact Landsberg hypersurface of a Minkowski space $(V^{n+1},F̅)$ with constant mean curvature H. Using the Gauss formula for the Chern connection of Finsler submanifolds, we prove that if M is convex, then M is Riemannian with constant curvature.
LA - eng
KW - Finsler structure; Minkowski space; Landsberg hypersurfaces; constant mean curvature; Chern connection; convexity
UR - http://eudml.org/doc/280144
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.