On zeros of differences of meromorphic functions

Yong Liu; HongXun Yi

Annales Polonici Mathematici (2011)

  • Volume: 100, Issue: 2, page 167-178
  • ISSN: 0066-2216

Abstract

top
Let f be a transcendental meromorphic function and g ( z ) = f ( z + c ) + + f ( z + c k ) - k f ( z ) and g k ( z ) = f ( z + c ) f ( z + c k ) - f k ( z ) . A number of results are obtained concerning the exponents of convergence of the zeros of g(z), g k ( z ) , g(z)/f(z), and g k ( z ) / f k ( z ) .

How to cite

top

Yong Liu, and HongXun Yi. "On zeros of differences of meromorphic functions." Annales Polonici Mathematici 100.2 (2011): 167-178. <http://eudml.org/doc/280606>.

@article{YongLiu2011,
abstract = {Let f be a transcendental meromorphic function and $g(z) = f(z+c₁) + ⋯ + f(z+c_k) - kf(z)$ and $g_k(z) = f(z+c₁) ⋯ f(z+c_k) - f^k(z)$. A number of results are obtained concerning the exponents of convergence of the zeros of g(z), $g_k(z)$, g(z)/f(z), and $\{g_k(z)\}/\{f^k(z)\}$.},
author = {Yong Liu, HongXun Yi},
journal = {Annales Polonici Mathematici},
keywords = {complex difference; zero; exponent of convergence},
language = {eng},
number = {2},
pages = {167-178},
title = {On zeros of differences of meromorphic functions},
url = {http://eudml.org/doc/280606},
volume = {100},
year = {2011},
}

TY - JOUR
AU - Yong Liu
AU - HongXun Yi
TI - On zeros of differences of meromorphic functions
JO - Annales Polonici Mathematici
PY - 2011
VL - 100
IS - 2
SP - 167
EP - 178
AB - Let f be a transcendental meromorphic function and $g(z) = f(z+c₁) + ⋯ + f(z+c_k) - kf(z)$ and $g_k(z) = f(z+c₁) ⋯ f(z+c_k) - f^k(z)$. A number of results are obtained concerning the exponents of convergence of the zeros of g(z), $g_k(z)$, g(z)/f(z), and ${g_k(z)}/{f^k(z)}$.
LA - eng
KW - complex difference; zero; exponent of convergence
UR - http://eudml.org/doc/280606
ER -

NotesEmbed ?

top

You must be logged in to post comments.