top
Let f be a transcendental meromorphic function and and . A number of results are obtained concerning the exponents of convergence of the zeros of g(z), , g(z)/f(z), and .
Yong Liu, and HongXun Yi. "On zeros of differences of meromorphic functions." Annales Polonici Mathematici 100.2 (2011): 167-178. <http://eudml.org/doc/280606>.
@article{YongLiu2011, abstract = {Let f be a transcendental meromorphic function and $g(z) = f(z+c₁) + ⋯ + f(z+c_k) - kf(z)$ and $g_k(z) = f(z+c₁) ⋯ f(z+c_k) - f^k(z)$. A number of results are obtained concerning the exponents of convergence of the zeros of g(z), $g_k(z)$, g(z)/f(z), and $\{g_k(z)\}/\{f^k(z)\}$.}, author = {Yong Liu, HongXun Yi}, journal = {Annales Polonici Mathematici}, keywords = {complex difference; zero; exponent of convergence}, language = {eng}, number = {2}, pages = {167-178}, title = {On zeros of differences of meromorphic functions}, url = {http://eudml.org/doc/280606}, volume = {100}, year = {2011}, }
TY - JOUR AU - Yong Liu AU - HongXun Yi TI - On zeros of differences of meromorphic functions JO - Annales Polonici Mathematici PY - 2011 VL - 100 IS - 2 SP - 167 EP - 178 AB - Let f be a transcendental meromorphic function and $g(z) = f(z+c₁) + ⋯ + f(z+c_k) - kf(z)$ and $g_k(z) = f(z+c₁) ⋯ f(z+c_k) - f^k(z)$. A number of results are obtained concerning the exponents of convergence of the zeros of g(z), $g_k(z)$, g(z)/f(z), and ${g_k(z)}/{f^k(z)}$. LA - eng KW - complex difference; zero; exponent of convergence UR - http://eudml.org/doc/280606 ER -