Displaying similar documents to “On zeros of differences of meromorphic functions”

Universal sequences for Zalcman’s Lemma and Q m -normality

Shahar Nevo (2005)

Annales Polonici Mathematici

Similarity:

We prove the existence of sequences ϱ n = 1 , ϱₙ → 0⁺, and z n = 1 , |zₙ| = 1/2, such that for every α ∈ ℝ and for every meromorphic function G(z) on ℂ, there exists a meromorphic function F ( z ) = F G , α ( z ) on ℂ such that ϱ α F ( n z + n ϱ ζ ) converges to G(ζ) uniformly on compact subsets of ℂ in the spherical metric. As a result, we construct a family of functions meromorphic on the unit disk that is Q m -normal for no m ≥ 1 and on which an extension of Zalcman’s Lemma holds.

Meromorphic function sharing a small function with a linear differential polynomial

Indrajit Lahiri, Amit Sarkar (2016)

Mathematica Bohemica

Similarity:

The problem of uniqueness of an entire or a meromorphic function when it shares a value or a small function with its derivative became popular among the researchers after the work of Rubel and Yang (1977). Several authors extended the problem to higher order derivatives. Since a linear differential polynomial is a natural extension of a derivative, in the paper we study the uniqueness of a meromorphic function that shares one small function CM with a linear differential polynomial, and...

Finite logarithmic order meromorphic solutions of linear difference/differential-difference equations

Abdelkader Dahmani, Benharrat Belaidi (2025)

Mathematica Bohemica

Similarity:

Firstly we study the growth of meromorphic solutions of linear difference equation of the form A k ( z ) f ( z + c k ) + + A 1 ( z ) f ( z + c 1 ) + A 0 ( z ) f ( z ) = F ( z ) , where A k ( z ) , ... , A 0 ( z ) and F ( z ) are meromorphic functions of finite logarithmic order, c i ( i = 1 , ... , k , k ) are distinct nonzero complex constants. Secondly, we deal with the growth of solutions of differential-difference equation of the form i = 0 n j = 0 m A i j ( z ) f ( j ) ( z + c i ) = F ( z ) , where A i j ( z ) ( i = 0 , 1 , ... , n , j = 0 , 1 , ... , m , n , m ) and F ( z ) are meromorphic functions of finite logarithmic order, c i ( i = 0 , ... , n ) are distinct complex constants. We extend some previous results...

On the meromorphic solutions of a certain type of nonlinear difference-differential equation

Sujoy Majumder, Lata Mahato (2023)

Mathematica Bohemica

Similarity:

The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation f n ( z ) + P d ( z , f ) = p 1 ( z ) e α 1 ( z ) + p 2 ( z ) e α 2 ( z ) , where P d ( z , f ) is a difference-differential polynomial in f ( z ) of degree d n - 1 with small functions of f ( z ) as its coefficients, p 1 , p 2 are nonzero rational functions and α 1 , α 2 are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation.

Pull-back of currents by meromorphic maps

Tuyen Trung Truong (2013)

Bulletin de la Société Mathématique de France

Similarity:

Let  X and Y be compact Kähler manifolds, and let  f : X Y be a dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator f for currents of bidegrees ( p , p ) of finite order on  Y (and thus forcurrent, since Y is compact). This operator has good properties as may be expected. Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony,...

Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions

Bappaditya Bhowmik, Sambhunath Sen (2024)

Czechoslovak Mathematical Journal

Similarity:

It is known that if f is holomorphic in the open unit disc 𝔻 of the complex plane and if, for some c > 0 , | f ( z ) | 1 / ( 1 - | z | 2 ) c , z 𝔻 , then | f ' ( z ) | 2 ( c + 1 ) / ( 1 - | z | 2 ) c + 1 . We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in 𝔻 . In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.

Uniqueness results for differential polynomials sharing a set

Soniya Sultana, Pulak Sahoo (2025)

Mathematica Bohemica

Similarity:

We investigate the uniqueness results of meromorphic functions if differential polynomials of the form ( Q ( f ) ) ( k ) and ( Q ( g ) ) ( k ) share a set counting multiplicities or ignoring multiplicities, where Q is a polynomial of one variable. We give suitable conditions on the degree of Q and on the number of zeros and the multiplicities of the zeros of Q ' . The results of the paper generalize some results due to T. T. H. An and N. V. Phuong (2017) and that of N. V. Phuong (2021).

Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial

Pulak Sahoo (2016)

Mathematica Bohemica

Similarity:

Let k be a nonnegative integer or infinity. For a { } we denote by E k ( a ; f ) the set of all a -points of f where an a -point of multiplicity m is counted m times if m k and k + 1 times if m > k . If E k ( a ; f ) = E k ( a ; g ) then we say that f and g share the value a with weight k . Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to...

Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity

Duc Quang Si, An Hai Tran (2020)

Mathematica Bohemica

Similarity:

This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions f 1 , f 2 , f 3 on an annulus 𝔸 ( R 0 ) share four distinct values regardless of multiplicity and have the of positive counting function, then f 1 = f 2 or f 2 = f 3 or f 3 = f 1 . This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level 2 and sharing...

Maximally convergent rational approximants of meromorphic functions

Hans-Peter Blatt (2015)

Banach Center Publications

Similarity:

Let f be meromorphic on the compact set E ⊂ C with maximal Green domain of meromorphy E ρ ( f ) , ρ(f) < ∞. We investigate rational approximants r n , m of f on E with numerator degree ≤ n and denominator degree ≤ mₙ. We show that a geometric convergence rate of order ρ ( f ) - n on E implies uniform maximal convergence in m₁-measure inside E ρ ( f ) if mₙ = o(n/log n) as n → ∞. If mₙ = o(n), n → ∞, then maximal convergence in capacity inside E ρ ( f ) can be proved at least for a subsequence Λ ⊂ ℕ. Moreover, an analogue...

Twists and resonance of L -functions, I

Jerzy Kaczorowski, Alberto Perelli (2016)

Journal of the European Mathematical Society

Similarity:

We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure and bounds for the order of growth, of all the nonlinear twists with exponents 1 / d of the L -functions of any degree d 1 in the extended Selberg class. In particular, this solves the resonance problem in all such cases.

Some subclasses of meromorphic and multivalent functions

Ding-Gong Yang, Jin-Lin Liu (2014)

Annales Polonici Mathematici

Similarity:

The authors introduce two new subclasses F p , k ( λ , A , B ) and G p , k ( λ , A , B ) of meromorphically multivalent functions. Distortion bounds and convolution properties for F p , k ( λ , A , B ) , G p , k ( λ , A , B ) and their subclasses with positive coefficients are obtained. Some inclusion relations for these function classes are also given.

Normal families and shared values of meromorphic functions

Mingliang Fang, Lawrence Zalcman (2003)

Annales Polonici Mathematici

Similarity:

Let ℱ be a family of meromorphic functions on a plane domain D, all of whose zeros are of multiplicity at least k ≥ 2. Let a, b, c, and d be complex numbers such that d ≠ b,0 and c ≠ a. If, for each f ∈ ℱ, f ( z ) = a f ( k ) ( z ) = b , and f ( k ) ( z ) = d f ( z ) = c , then ℱ is a normal family on D. The same result holds for k=1 so long as b≠(m+1)d, m=1,2,....

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

Weak convergence of mutually independent X B and X A under weak convergence of X X B - X A

W. Szczotka (2006)

Applicationes Mathematicae

Similarity:

For each n ≥ 1, let v n , k , k 1 and u n , k , k 1 be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means v̅ₙ and u̅̅ₙ, respectively. Let X B ( t ) = ( 1 / c ) j = 1 [ n t ] ( v n , j - v ̅ ) , X A ( t ) = ( 1 / c ) j = 1 [ n t ] ( u n , j - u ̅ ̅ ) , t ≥ 0, and X = X B - X A . The main result gives conditions under which the weak convergence X X , where X is a Lévy process, implies X B X B and X A X A , where X B and X A are mutually independent Lévy processes and X = X B - X A .

A remark on complex powers of analytic functions

Giuseppe Zampieri (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Sia K n un compatto, f 0 una funzione analitica all'intorno di K , ed m la massima molteplicità in K degli zeri di f ; si prova che la potenza f λ ( λ , R e λ > 1 m ) è integrabile in K . L'estensione meromorfa dell'applicazione λ f λ da R e λ > 0 a tutto (con valori in 𝒟 ( K ) anziché in L 1 ( K ) ) era già stata provata in [1] e [2].

Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation

Innocent Ndikubwayo (2020)

Czechoslovak Mathematical Journal

Similarity:

This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence { P i } i = 1 generated by a three-term recurrence relation P i ( x ) + Q 1 ( x ) P i - 1 ( x ) + Q 2 ( x ) P i - 2 ( x ) = 0 with the standard initial conditions P 0 ( x ) = 1 , P - 1 ( x ) = 0 , where Q 1 ( x ) and Q 2 ( x ) are arbitrary real polynomials.