On the asymptotic rate of non-ergodic information sources

Karel Winkelbauer

Kybernetika (1970)

  • Volume: 06, Issue: 2, page (127)-148
  • ISSN: 0023-5954

How to cite

top

Winkelbauer, Karel. "On the asymptotic rate of non-ergodic information sources." Kybernetika 06.2 (1970): (127)-148. <http://eudml.org/doc/28061>.

@article{Winkelbauer1970,
author = {Winkelbauer, Karel},
journal = {Kybernetika},
language = {eng},
number = {2},
pages = {(127)-148},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the asymptotic rate of non-ergodic information sources},
url = {http://eudml.org/doc/28061},
volume = {06},
year = {1970},
}

TY - JOUR
AU - Winkelbauer, Karel
TI - On the asymptotic rate of non-ergodic information sources
JO - Kybernetika
PY - 1970
PB - Institute of Information Theory and Automation AS CR
VL - 06
IS - 2
SP - (127)
EP - 148
LA - eng
UR - http://eudml.org/doc/28061
ER -

References

top
  1. P. R. Halmos, Measure theory, New York 1950. (1950) Zbl0040.16802MR0033869
  2. A. I. Khinchin, Mathematical foundations of information theory, Dover Publications, New York 1957. (1957) Zbl0088.10404MR0092709
  3. N. Kryloff N. Bogoliouboff, La théorie générale de la mesure dans son application à l'étude des systèmes dynamique de la mécanique non linéaire, Ann. of Math. 38 (1937), 65-113. (1937) MR1503326
  4. B. McMillan, The basic theorems of information theory, Ann. Math. Stat. 24 (1953), 196-219. (1953) Zbl0050.35501MR0055621
  5. J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136. (1952) Zbl0046.11504MR0047262
  6. K. R. Parthasarathy, On the integral representation of the rate of transmission of a stationary channel, Illinois Journ. of Math. 5 (1961), 2, 299-305. (1961) Zbl0100.33903MR0121259
  7. K. R. Parthasarathy, A note on McMillan's theorem for countable alphabets, Transact. Third Prague Conf. on Inform. Theory etc., Prague 1964, 541-543. (1964) Zbl0199.21401MR0166006
  8. K. R. Parthasarathy, Effective entropy rate and transmission of information through channels with additive random noise, Manuscript, 1962. (1962) MR0173568
  9. A. Perez, Notions généralizées d'incertitude, d'entropie et d'information, Transact. First Prague Conf. on Inform. Theory etc., Prague 1957, 183-208. (1957) MR0099889
  10. A. Perez, Sur la théorie de l'information dans le cas d'un alphabet abstrait, Transact. First Prague Conf. on Inform. Theory etc., Prague 1957, 209-243. (1957) Zbl0106.33102MR0099890
  11. A. Perez, Extensions of Shannon-McMillan's limit theorem to more general stochastic processes, Transact. Third Prague Conf. on Inform. Theory etc., Prague 1964, 545-574. (1964) Zbl0126.35703MR0165996
  12. V. A. Rohlin, New progress in the theory of transformation with invariant measure, (In Russian). Usp. matem. nauk 15 (1960), 3-26. (1960) MR0132155
  13. C. E. Shannon, A mathematical theory of communication, Bell System Tech. Journ. 27 (1948), Part I, 379-423. (1948) Zbl1154.94303MR0026286
  14. I. G. Sinal, On the flows with finite entropy, (In Russian). Dokl. Akad. Nauk 125 (1959), 6, 1200-1202. (1959) MR0103257
  15. K. Winkelbauer, On discrete information sources, Transact. Third Prague Conf. on Inform. Theory etc., Prague 1964, 765-830. (1964) Zbl0126.35702MR0166000
  16. K. Winkelbauer, Axiomatic definition of channel capacity and entropy rate, Transact. Fourth Prague Conf. on Inform. Theory etc., Prague 1967, 661-705. (1967) MR0219351
  17. K. Winkelbauer, Channels with finite past history, Transact. Second Prague Conf. on Inform. Theory etc., Prague 1960, 685-831. (1960) Zbl0161.16904MR0129056

Citations in EuDML Documents

top
  1. Karel Winkelbauer, On the existence of finite generators for invertible measure-preserving transformations
  2. Štefan Šujan, On a characteristic property of the asymptotic rate
  3. Štefan Šujan, A generalized coding problem for discrete information sources
  4. Karel Winkelbauer, On the coding theorem for decomposable discrete information channels. II
  5. Miroslav Krutina, Asymptotic rate of a flow
  6. Karel Winkelbauer, On the coding theorem for decomposable discrete information channels. I
  7. Štefan Šujan, A local structure of stationary perfectly noiseless codes between stationary non-ergodic sources. I. General considerations
  8. Štefan Šujan, Epsilon-rates, epsilon-quantiles, and group coding theorems for finitely additive information sources
  9. Štefan Šujan, Some functionals on sets of stationary codes
  10. Štefan Šujan, Channels with additive asymptotically mean stationary noise

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.