On the coding theorem for decomposable discrete information channels. II

Karel Winkelbauer

Kybernetika (1971)

  • Volume: 07, Issue: 3, page (230)-255
  • ISSN: 0023-5954

How to cite

top

Winkelbauer, Karel. "On the coding theorem for decomposable discrete information channels. II." Kybernetika 07.3 (1971): (230)-255. <http://eudml.org/doc/28895>.

@article{Winkelbauer1971,
author = {Winkelbauer, Karel},
journal = {Kybernetika},
language = {eng},
number = {3},
pages = {(230)-255},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the coding theorem for decomposable discrete information channels. II},
url = {http://eudml.org/doc/28895},
volume = {07},
year = {1971},
}

TY - JOUR
AU - Winkelbauer, Karel
TI - On the coding theorem for decomposable discrete information channels. II
JO - Kybernetika
PY - 1971
PB - Institute of Information Theory and Automation AS CR
VL - 07
IS - 3
SP - (230)
EP - 255
LA - eng
UR - http://eudml.org/doc/28895
ER -

References

top
  1. A. I. Khinchin, Mathematical foundations of information theory, Dover Publications, New York 1957. (1957) Zbl0088.10404MR0092709
  2. J. Nedoma, Capacity of a discrete channel, Transact. First Prague Conf. on Inform. Theory etc. Prague 1957, 143-181. (1957) Zbl0088.10701MR0102451
  3. J. Nedoma, On non-ergodic channels, Transact. Second Prague Conf. on Inform. Theory etc. Prague 1960, 363-395. (1960) Zbl0096.11101MR0129055
  4. K. R. Parthasarathy, Effective entropy rate and transmission of information through channels with additive random noise, Sankhya A 25 (1963), 75-84. (1963) Zbl0119.34003MR0173568
  5. V. A. Rohlin, New progress in the theory of transformation with invariant measure, (in Russian). Usp. Mat. Nauk 15 (1960), 3-26. (1960) MR0132155
  6. K. Winkelbauer, Channels with finite past history, Transact. Second Prague Conf. on Inform. Theory etc. Prague 1960, 685-831. (1960) Zbl0161.16904MR0129056
  7. K. Winkelbauer, On discrete information sources, Transact. Third Prague Conf. on Inform. Theory etc. Prague 1964, 765-830. (1964) Zbl0126.35702MR0166000
  8. K. Winkelbauer, Axiomatic definition of channel capacity and entropy rate, Transact. Fourth Prague Conf. on Inform. Theory etc., Prague 1967, 661-705. (1967) MR0219351
  9. K. Winkelbauer, On the asymptotic rate of non-ergodic information sources, Kybernetika 6 (1970), 2, 127-148. (1970) Zbl0245.94013MR0275979
  10. J. Wolfowitz, Coding theorems of information theory, Second ed. Berlin 1964. (1964) Zbl0132.39704MR0176851
  11. P. Billingsley, Ergodic Theory and Information, New York 1965. (1965) Zbl0141.16702MR0192027
  12. J. Nedoma, Über die Ergodizität und r-Ergodizität stationärer Wahrscheinlichkeitsmasse, Z. Wahrscheinlichkeitstheorie 2 (1963), 90-97. (1963) Zbl0122.14903MR0162263
  13. K. R. Parthasarathy, On the Integral Representation of the Rate of Transmission of a Stationary Channel, Illinois Journ. Math. 2 (1961), 299-305. (1961) Zbl0100.33903MR0121259

Citations in EuDML Documents

top
  1. Karel Winkelbauer, On the regularity condition for decomposable communication channels
  2. Karel Winkelbauer, Information channels composed of memoryless components
  3. Karel Winkelbauer, On discrete channels decomposable into memoryless components
  4. František Rublík, Simultaneous channels decomposable into memoryless components. I
  5. Štefan Šujan, On the capacity of asymptotically mean stationary channels
  6. Štefan Šujan, A local structure of stationary perfectly noiseless codes between stationary non-ergodic sources. II. Applications

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.