On the zero set of the Kobayashi-Royden pseudometric of the spectral unit ball
Nikolai Nikolov; Pascal J. Thomas
Annales Polonici Mathematici (2008)
- Volume: 93, Issue: 1, page 53-68
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topNikolai Nikolov, and Pascal J. Thomas. "On the zero set of the Kobayashi-Royden pseudometric of the spectral unit ball." Annales Polonici Mathematici 93.1 (2008): 53-68. <http://eudml.org/doc/280783>.
@article{NikolaiNikolov2008,
abstract = {Given A∈ Ωₙ, the n²-dimensional spectral unit ball, we show that if B is an n×n complex matrix, then B is a “generalized” tangent vector at A to an entire curve in Ωₙ if and only if B is in the tangent cone $C_A$ to the isospectral variety at A. In the case of Ω₃, the zero set of the Kobayashi-Royden pseudometric is completely described.},
author = {Nikolai Nikolov, Pascal J. Thomas},
journal = {Annales Polonici Mathematici},
keywords = {spectral Nevanlinna-Pick problem; spectral Carathéodory-Fejér problem; spectral ball; symmetrized polydisc; Lempert function; Kobayashi-Royden pseudometric},
language = {eng},
number = {1},
pages = {53-68},
title = {On the zero set of the Kobayashi-Royden pseudometric of the spectral unit ball},
url = {http://eudml.org/doc/280783},
volume = {93},
year = {2008},
}
TY - JOUR
AU - Nikolai Nikolov
AU - Pascal J. Thomas
TI - On the zero set of the Kobayashi-Royden pseudometric of the spectral unit ball
JO - Annales Polonici Mathematici
PY - 2008
VL - 93
IS - 1
SP - 53
EP - 68
AB - Given A∈ Ωₙ, the n²-dimensional spectral unit ball, we show that if B is an n×n complex matrix, then B is a “generalized” tangent vector at A to an entire curve in Ωₙ if and only if B is in the tangent cone $C_A$ to the isospectral variety at A. In the case of Ω₃, the zero set of the Kobayashi-Royden pseudometric is completely described.
LA - eng
KW - spectral Nevanlinna-Pick problem; spectral Carathéodory-Fejér problem; spectral ball; symmetrized polydisc; Lempert function; Kobayashi-Royden pseudometric
UR - http://eudml.org/doc/280783
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.