Displaying similar documents to “On the zero set of the Kobayashi-Royden pseudometric of the spectral unit ball”

On the joint spectral radius

Vladimír Müller (1997)

Annales Polonici Mathematici

Similarity:

We prove the p -spectral radius formula for n-tuples of commuting Banach algebra elements

Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs

Kinkar Ch. Das, Muhuo Liu (2016)

Czechoslovak Mathematical Journal

Similarity:

In this paper, the upper and lower bounds for the quotient of spectral radius (Laplacian spectral radius, signless Laplacian spectral radius) and the clique number together with the corresponding extremal graphs in the class of connected graphs with n vertices and clique number ω ( 2 ω n ) are determined. As a consequence of our results, two conjectures given in Aouchiche (2006) and Hansen (2010) are proved.

Formulae for joint spectral radii of sets of operators

Victor S. Shulman, Yuriĭ V. Turovskii (2002)

Studia Mathematica

Similarity:

The formula ϱ ( M ) = m a x ϱ χ ( M ) , r ( M ) is proved for precompact sets M of weakly compact operators on a Banach space. Here ϱ(M) is the joint spectral radius (the Rota-Strang radius), ϱ χ ( M ) is the Hausdorff spectral radius (connected with the Hausdorff measure of noncompactness) and r(M) is the Berger-Wang radius.

Linear maps on Mₙ(ℂ) preserving the local spectral radius

Abdellatif Bourhim, Vivien G. Miller (2008)

Studia Mathematica

Similarity:

Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and Φ ( T ) = α A T A - 1 for all T ∈ Mₙ(ℂ).

A spectral gap property for subgroups of finite covolume in Lie groups

Bachir Bekka, Yves Cornulier (2010)

Colloquium Mathematicae

Similarity:

Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation λ G / H of G on L²(G/H) has a spectral gap, that is, the restriction of λ G / H to the orthogonal complement of the constants in L²(G/H) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.

Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations

Meili Lin, Zhendong Sun (2018)

Kybernetika

Similarity:

In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least μ 1 measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness...

On the spectral multiplicity of a direct sum of operators

M. T. Karaev (2006)

Colloquium Mathematicae

Similarity:

We calculate the spectral multiplicity of the direct sum T⊕ A of a weighted shift operator T on a Banach space Y which is continuously embedded in l p and a suitable bounded linear operator A on a Banach space X.

Strong spectral gaps for compact quotients of products of PSL ( 2 , ) )

Dubi Kelmer, Peter Sarnak (2009)

Journal of the European Mathematical Society

Similarity:

The existence of a strong spectral gap for quotients Γ G of noncompact connected semisimple Lie groups is crucial in many applications. For congruence lattices there are uniform and very good bounds for the spectral gap coming from the known bounds towards the Ramanujan–Selberg conjectures. If G has no compact factors then for general lattices a spectral gap can still be established, but there is no uniformity and no effective bounds are known. This note is concerned with the spectral...

Absolutely continuous and singular spectral shift functions

Nurulla Azamov

Similarity:

Given a self-adjoint operator H₀, a self-adjoint trace-class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and cokernel, using the limiting absorption principle an explicit set Λ(H₀;F) ⊂ ℝ of full Lebesgue measure is defined, such that for all λ ∈ Λ(H₀+rV;F) ∩ Λ(H₀;F), where r ∈ ℝ, the wave w ± ( λ ; H + r V , H ) and the scattering matrices S(λ;H₀+rV,H₀) can be defined unambiguously. Many well-known properties of the wave and scattering matrices and operators are proved, including...

A spectral gap theorem in SU ( d )

Jean Bourgain, Alex Gamburd (2012)

Journal of the European Mathematical Society

Similarity:

We establish the spectral gap property for dense subgroups of SU ( d ) ( d 2 ) , generated by finitely many elements with algebraic entries; this result was announced in [BG3]. The method of proof differs, in several crucial aspects, from that used in [BG] in the case of SU ( 2 ) .

Spectral projections for the twisted Laplacian

Herbert Koch, Fulvio Ricci (2007)

Studia Mathematica

Similarity:

Let n ≥ 1, d = 2n, and let (x,y) ∈ ℝⁿ × ℝⁿ be a generic point in ℝ²ⁿ. The twisted Laplacian L = - 1 / 2 j = 1 n [ ( x j + i y j ) ² + ( y j - i x j ) ² ] has the spectrum n + 2k = λ²: k a nonnegative integer. Let P λ be the spectral projection onto the (infinite-dimensional) eigenspace. We find the optimal exponent ϱ(p) in the estimate | | P λ u | | L p ( d ) λ ϱ ( p ) | | u | | L ² ( d ) for all p ∈ [2,∞], improving previous partial results by Ratnakumar, Rawat and Thangavelu, and by Stempak and Zienkiewicz. The expression for ϱ(p) is ϱ(p) = 1/p -1/2 if 2 ≤ p ≤ 2(d+1)/(d-1), ϱ(p) = (d-2)/2 - d/p...

Growth and smooth spectral synthesis in the Fourier algebras of Lie groups

Jean Ludwig, Lyudmila Turowska (2006)

Studia Mathematica

Similarity:

Let G be a Lie group and A(G) the Fourier algebra of G. We describe sufficient conditions for complex-valued functions to operate on elements u ∈ A(G) of certain differentiability classes in terms of the dimension of the group G. Furthermore, generalizing a result of Kirsch and Müller [Ark. Mat. 18 (1980), 145-155] we prove that closed subsets E of a smooth m-dimensional submanifold of a Lie group G having a certain cone property are sets of smooth spectral synthesis. For such sets we...

Spectral synthesis and operator synthesis

K. Parthasarathy, R. Prakash (2006)

Studia Mathematica

Similarity:

Relations between spectral synthesis in the Fourier algebra A(G) of a compact group G and the concept of operator synthesis due to Arveson have been studied in the literature. For an A(G)-submodule X of VN(G), X-synthesis in A(G) has been introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To any such X we associate a V ( G ) -submodule X̂ of ℬ(L²(G)) (where V ( G ) is the weak-* Haagerup tensor product L ( G ) w * h L ( G ) ), define the concept of X̂-operator synthesis and prove that a...