On derivations and crossed homomorphisms

Viktor Losert

Banach Center Publications (2010)

  • Volume: 91, Issue: 1, page 199-217
  • ISSN: 0137-6934

Abstract

top
We discuss some results about derivations and crossed homomorphisms arising in the context of locally compact groups and their group algebras, in particular, L¹(G), the von Neumann algebra VN(G) and actions of G on related algebras. We answer a question of Dales, Ghahramani, Grønbæk, showing that L¹(G) is always permanently weakly amenable. Then we show that for some classes of groups (e.g. IN-groups) the homology of L¹(G) with coefficients in VN(G) is trivial. But this is no longer true, in general, if VN(G) is replaced by other von Neumann algebras, like ℬ(L²(G)). Finally, as an example of a non-discrete, non-amenable group, we investigate the case of G = SL(2,ℝ) where the situation is rather different.

How to cite

top

Viktor Losert. "On derivations and crossed homomorphisms." Banach Center Publications 91.1 (2010): 199-217. <http://eudml.org/doc/282535>.

@article{ViktorLosert2010,
abstract = {We discuss some results about derivations and crossed homomorphisms arising in the context of locally compact groups and their group algebras, in particular, L¹(G), the von Neumann algebra VN(G) and actions of G on related algebras. We answer a question of Dales, Ghahramani, Grønbæk, showing that L¹(G) is always permanently weakly amenable. Then we show that for some classes of groups (e.g. IN-groups) the homology of L¹(G) with coefficients in VN(G) is trivial. But this is no longer true, in general, if VN(G) is replaced by other von Neumann algebras, like ℬ(L²(G)). Finally, as an example of a non-discrete, non-amenable group, we investigate the case of G = SL(2,ℝ) where the situation is rather different.},
author = {Viktor Losert},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {199-217},
title = {On derivations and crossed homomorphisms},
url = {http://eudml.org/doc/282535},
volume = {91},
year = {2010},
}

TY - JOUR
AU - Viktor Losert
TI - On derivations and crossed homomorphisms
JO - Banach Center Publications
PY - 2010
VL - 91
IS - 1
SP - 199
EP - 217
AB - We discuss some results about derivations and crossed homomorphisms arising in the context of locally compact groups and their group algebras, in particular, L¹(G), the von Neumann algebra VN(G) and actions of G on related algebras. We answer a question of Dales, Ghahramani, Grønbæk, showing that L¹(G) is always permanently weakly amenable. Then we show that for some classes of groups (e.g. IN-groups) the homology of L¹(G) with coefficients in VN(G) is trivial. But this is no longer true, in general, if VN(G) is replaced by other von Neumann algebras, like ℬ(L²(G)). Finally, as an example of a non-discrete, non-amenable group, we investigate the case of G = SL(2,ℝ) where the situation is rather different.
LA - eng
UR - http://eudml.org/doc/282535
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.