Jumps of entropy for interval maps
Fundamenta Mathematicae (2015)
- Volume: 231, Issue: 3, page 299-317
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topDavid Burguet. "Jumps of entropy for $C^{r}$ interval maps." Fundamenta Mathematicae 231.3 (2015): 299-317. <http://eudml.org/doc/283060>.
@article{DavidBurguet2015,
abstract = {We study the jumps of topological entropy for $C^\{r\}$ interval or circle maps. We prove in particular that the topological entropy is continuous at any $f ∈ C^\{r\}([0,1])$ with $h_\{top\}(f) > (log⁺||f^\{\prime \}||_\{∞\})/r$. To this end we study the continuity of the entropy of the Buzzi-Hofbauer diagrams associated to $C^\{r\}$ interval maps.},
author = {David Burguet},
journal = {Fundamenta Mathematicae},
keywords = {entropy; smooth interval maps; Buzzi-Hofbauer diagram},
language = {eng},
number = {3},
pages = {299-317},
title = {Jumps of entropy for $C^\{r\}$ interval maps},
url = {http://eudml.org/doc/283060},
volume = {231},
year = {2015},
}
TY - JOUR
AU - David Burguet
TI - Jumps of entropy for $C^{r}$ interval maps
JO - Fundamenta Mathematicae
PY - 2015
VL - 231
IS - 3
SP - 299
EP - 317
AB - We study the jumps of topological entropy for $C^{r}$ interval or circle maps. We prove in particular that the topological entropy is continuous at any $f ∈ C^{r}([0,1])$ with $h_{top}(f) > (log⁺||f^{\prime }||_{∞})/r$. To this end we study the continuity of the entropy of the Buzzi-Hofbauer diagrams associated to $C^{r}$ interval maps.
LA - eng
KW - entropy; smooth interval maps; Buzzi-Hofbauer diagram
UR - http://eudml.org/doc/283060
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.