Lyapunov functions and -estimates for a class of reaction-diffusion systems
Colloquium Mathematicae (2001)
- Volume: 87, Issue: 1, page 113-127
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topDirk Horstmann. "Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems." Colloquium Mathematicae 87.1 (2001): 113-127. <http://eudml.org/doc/283757>.
@article{DirkHorstmann2001,
	abstract = {We give a sufficient condition for the existence of a Lyapunov function for the system
aₜ = ∇(k(a,c)∇a - h(a,c)∇c), x ∈ Ω, t > 0,
$εcₜ = k_\{c\}Δc - f(c)c + g(a,c)$, x ∈ Ω, t > 0,
for $Ω ⊂ ℝ^\{N\}$, completed with either a = c = 0, or
∂a/∂n = ∂c/∂n = 0, or k(a,c) ∂a/∂n = h(a,c) ∂c/∂n, c = 0 on ∂Ω × t > 0.
Furthermore we study the asymptotic behaviour of the solution and give some uniform $L^\{p\}$-estimates.},
	author = {Dirk Horstmann},
	journal = {Colloquium Mathematicae},
	keywords = {asymptotic behaviour of solution; uniform -estimates},
	language = {eng},
	number = {1},
	pages = {113-127},
	title = {Lyapunov functions and $L^\{p\}$-estimates for a class of reaction-diffusion systems},
	url = {http://eudml.org/doc/283757},
	volume = {87},
	year = {2001},
}
TY  - JOUR
AU  - Dirk Horstmann
TI  - Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems
JO  - Colloquium Mathematicae
PY  - 2001
VL  - 87
IS  - 1
SP  - 113
EP  - 127
AB  - We give a sufficient condition for the existence of a Lyapunov function for the system
aₜ = ∇(k(a,c)∇a - h(a,c)∇c), x ∈ Ω, t > 0,
$εcₜ = k_{c}Δc - f(c)c + g(a,c)$, x ∈ Ω, t > 0,
for $Ω ⊂ ℝ^{N}$, completed with either a = c = 0, or
∂a/∂n = ∂c/∂n = 0, or k(a,c) ∂a/∂n = h(a,c) ∂c/∂n, c = 0 on ∂Ω × t > 0.
Furthermore we study the asymptotic behaviour of the solution and give some uniform $L^{p}$-estimates.
LA  - eng
KW  - asymptotic behaviour of solution; uniform -estimates
UR  - http://eudml.org/doc/283757
ER  - 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 