PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic
Applications of Mathematics (2004)
- Volume: 49, Issue: 6, page 539-564
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topPerthame, Benoît. "PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic." Applications of Mathematics 49.6 (2004): 539-564. <http://eudml.org/doc/33200>.
@article{Perthame2004,
abstract = {Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia coli or amoeba like Dictyostelium discoïdeum exhibiting pointwise concentrations. For human endothelial cells, several experiments show the formation of networks that can be interpreted as the initiation of angiogenesis. To recover such patterns a hydrodynamical model seems better adapted. The two systems can be unified by a kinetic approach that was proposed for Escherichia coli, based on more precise experiments showing a movement by ‘jump and tumble’. This nonlinear kinetic model is interesting by itself and the existence theory is not complete. It is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-Segel model and in a hydrodynamical limit one recovers the model proposed for human endothelial cells. We also mention the mathematical interest of analyzing another degenerate parabolic system (exhibiting different properties) proposed to describe the angiogenesis phenomena i.e. the formation of capillary blood vessels.},
author = {Perthame, Benoît},
journal = {Applications of Mathematics},
keywords = {chemotaxis; angiogenesis; degenerate parabolic equations; kinetic equations; global weak solutions; blow-up; chemotaxis; angiogenesis; degenerate parabolic equations; kinetic equations; global weak solutions; blow-up},
language = {eng},
number = {6},
pages = {539-564},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic},
url = {http://eudml.org/doc/33200},
volume = {49},
year = {2004},
}
TY - JOUR
AU - Perthame, Benoît
TI - PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 6
SP - 539
EP - 564
AB - Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia coli or amoeba like Dictyostelium discoïdeum exhibiting pointwise concentrations. For human endothelial cells, several experiments show the formation of networks that can be interpreted as the initiation of angiogenesis. To recover such patterns a hydrodynamical model seems better adapted. The two systems can be unified by a kinetic approach that was proposed for Escherichia coli, based on more precise experiments showing a movement by ‘jump and tumble’. This nonlinear kinetic model is interesting by itself and the existence theory is not complete. It is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-Segel model and in a hydrodynamical limit one recovers the model proposed for human endothelial cells. We also mention the mathematical interest of analyzing another degenerate parabolic system (exhibiting different properties) proposed to describe the angiogenesis phenomena i.e. the formation of capillary blood vessels.
LA - eng
KW - chemotaxis; angiogenesis; degenerate parabolic equations; kinetic equations; global weak solutions; blow-up; chemotaxis; angiogenesis; degenerate parabolic equations; kinetic equations; global weak solutions; blow-up
UR - http://eudml.org/doc/33200
ER -
References
top- 10.1007/BF00275919, J. Math. Biol. 9 (1980), 147–177. (1980) Zbl0434.92001MR0661424DOI10.1007/BF00275919
- Biological motion. Proceedings of a workshop held in Königswinter, Germany, March 16–19, 1989. Lecture Notes in Biomathematics, 89, Springer-Verlag, Berlin, 1990. (1990)
- 10.1016/S0893-9659(98)00041-X, Appl. Math. Lett. 11 (1998), 109–114. (1998) DOI10.1016/S0893-9659(98)00041-X
- 10.1090/S0002-9947-1984-0743736-0, Trans. Amer. Math. Soc. 284 (1984), 617–649. (1984) MR0743736DOI10.1090/S0002-9947-1984-0743736-0
- 10.1016/S0895-7177(00)00143-6, Math. Comput. Modelling 32 (2000), 413–452. (2000) MR1775113DOI10.1016/S0895-7177(00)00143-6
- 10.1103/PhysRevE.64.061904, Phys. Rev. E 64 (2001). (2001) DOI10.1103/PhysRevE.64.061904
- Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl. 9 (1999), 347–359. (1999) Zbl0941.35009MR1690388
- 10.4064/cm-66-1-131-145, Colloq. Math. 66 (1993), 131–145. (1993) MR1242651DOI10.4064/cm-66-1-131-145
- 10.1016/S0034-4877(03)90013-9, Rep. Math. Phys. 52 (2003), 205–225. (2003) MR2016216DOI10.1016/S0034-4877(03)90013-9
- 10.1088/0951-7715/12/4/320, Nonlinearity 12 (1999), 1071–1098. (1999) MR1709861DOI10.1088/0951-7715/12/4/320
- 10.1016/S0006-3495(98)77880-4, Biophysical Journal 74 (1995), 1677–1693. (1995) DOI10.1016/S0006-3495(98)77880-4
- The Mathematical Theory of Dilute Gases, Applied Math. Sciences Vol. 106, Springer-Verlag, New York, 1994. (1994) MR1307620
- 10.1007/s00605-004-0234-7, Monatsh. Math. 142 (2004), 123–141. (2004) MR2065025DOI10.1007/s00605-004-0234-7
- 10.1016/0895-7177(96)00019-2, Math. Comput. Modelling 23 (1996), 47–87. (1996) DOI10.1016/0895-7177(96)00019-2
- Macroscopic modelling of the growth and developement of tumor masses, Preprint No. 27, Politecnico di Torino, 2000. (2000)
- 10.1016/S1631-073X(02)00008-0, C. R. Acad. Sci. Paris, Ser. I 336 (2003), 141–146. (2003) MR1969568DOI10.1016/S1631-073X(02)00008-0
- 10.1007/s00032-003-0026-x, Milano J. Math. 72 (2004), 1–29. (2004) MR2099126DOI10.1007/s00032-003-0026-x
- 10.1016/S0893-9659(00)00044-6, Appl. Math. Lett. 13 (2000), 127–132. (2000) MR1760274DOI10.1016/S0893-9659(00)00044-6
- Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J. 49 (2000), 1175–1198. (2000) MR1803225
- Cattaneo models for chemotaxis, numerical solution and pattern formation, J. Math. Biol. 46 (2003), 461–478. (2003) MR1963070
- Optimal critical mass in the two dimensional Keller-Segel model in , C. R. Acad. Sci. (2004) (to appear). (ARRAY(0x96e3808)) MR2103197
- Kinetic Models for Chemotaxis. ANUM preprint, (2003). (2003) MR2093271
- Partial Differential Equations, Amer. Math. Soc., Providence, 1998. (1998) Zbl0902.35002
- Derivation of hyperbolic models for chemosensitive movement. Preprint, Ecole Normale Supérieure, 2003. (2003) MR2120548
- 10.1137/S0036141001385046, SIAM J. Math. Anal. 33 (2002), 1330–1355. (2002) MR1920634DOI10.1137/S0036141001385046
- 10.1016/S0022-247X(02)00147-6, J. Math. Anal. Appl. 272 (2002), 138–163. (2002) MR1930708DOI10.1016/S0022-247X(02)00147-6
- 10.1002/mana.19981950106, Math. Nachr. 195 (1998), 77–114. (1998) MR1654677DOI10.1002/mana.19981950106
- 10.1103/PhysRevLett.90.118101, Phys. Rev. Lett. 90 (2003), . (2003) DOI10.1103/PhysRevLett.90.118101
- 10.1017/S0308210500000676, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 1259–1273. (2000) MR1809103DOI10.1017/S0308210500000676
- The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. (1996) Zbl0858.76001MR1379589
- 10.1007/BF01445268, Math. Ann. 306 (1996), 583–623. (1996) MR1415081DOI10.1007/BF01445268
- 10.1088/0951-7715/10/6/016, Nonlinearity 10 (1997), 1739–1754. (1997) MR1483563DOI10.1088/0951-7715/10/6/016
- 10.1137/S0036139999358167, SIAM J. Appl. Math. 61 (2000), 751–775. (2000) MR1788017DOI10.1137/S0036139999358167
- 10.4064/cm87-1-7, Colloq. Math. 87 (2001), 113–127. (2001) Zbl0966.35022MR1812147DOI10.4064/cm87-1-7
- From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, Jahresber. Dtsch. Math.-Ver. Vol. 105, 2003, pp. 103–165. (2003) Zbl1071.35001MR2013508
- Global solutions of nonlinear transport equations for chemosensitive movement, SIAM J. Math. Anal (to appear). (to appear) MR2139206
- 10.1090/S0002-9947-1992-1046835-6, Trans. Amer. Math. Soc. 329 (1992), 819–824. (1992) MR1046835DOI10.1090/S0002-9947-1992-1046835-6
- Assessing the Keller-Segel model: How has it fared? Biological growth and spread, Proc. Conf., Heidelberg, 1979. Lecture Notes in Biomath. Vol. 38, Springer-Verlag, Berlin-New York, 1980, pp. 379–387. (1980) MR0609374
- 10.1016/0022-5193(70)90092-5, J. Theoret. Biol. 26 (1970), 399–415. (1970) DOI10.1016/0022-5193(70)90092-5
- 10.1016/0022-5193(71)90050-6, J. Theoret. Biol. 30 (1971), 225–234. (1971) DOI10.1016/0022-5193(71)90050-6
- 10.1016/0022-5193(71)90051-8, J. Theoret. Biol. 30 (1971), 235–248. (1971) DOI10.1016/0022-5193(71)90051-8
- 10.1137/S0036139995291106, SIAM J. Appl. Math. 57 (1997), 683–730. (1997) MR1450846DOI10.1137/S0036139995291106
- 10.1002/mma.212, Math. Methods Appl. Sci. 24 (2001), 405–426. (2001) MR1821934DOI10.1002/mma.212
- Mathematical modelling of the onset of capillary formation initiating angiogenesis, J. Math. Biol. 42 (2001), 195–238. (2001) MR1828815
- Applications of mathematical modelling to biological pattern formation. Coherent Structures in Complex Systems (Sitges, 2000), Lecture Notes in Phys. Vol. 567, Springer-Verlag, Berlin, 2001, pp. 205–217. (2001) MR1995108
- 10.1051/proc:2002018, ESAIM Proc. 12 (2002 (electronic)), 108–114. (2002 (electronic)) DOI10.1051/proc:2002018
- 10.1051/m2an:2003048, ESAIM: Math. Model. Numer. Anal. 37 (2003), 617–630. (2003) MR2018433DOI10.1051/m2an:2003048
- General entropy equations for structured population models and scattering, C. R. Acad. Sci. Paris (to appear). (to appear) MR2065377
- Mathematical Biology, Vol. 2, third revised edition. Spatial Models and Biomedical Applications, Springer-Verlag, , 2003. (2003) MR1952568
- Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995), 581–601. (1995) Zbl0843.92007MR1361006
- Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 145–156. (1998) MR1623326
- 10.1007/s002050100139, Arch. Rational. Mech. Anal. 158 (2001), 29–59. (2001) MR1834113DOI10.1007/s002050100139
- 10.1137/S0036139995288976, SIAM J. Appl. Math. 57 (1997), 1044–1081. (1997) MR1462051DOI10.1137/S0036139995288976
- 10.1007/BF00277392, J. Math. Biol. 26 (1988), 263–298. (1988) MR0949094DOI10.1007/BF00277392
- 10.1007/BF02476407, Bull. Math. Biophys. 15 (1953), 311–338. (1953) MR0081586DOI10.1007/BF02476407
- 10.1090/S0273-0979-04-01004-3, Bull. Amer. Math. Soc. (NS) 41 (2004), 205–244. (2004) Zbl1151.82351MR2043752DOI10.1090/S0273-0979-04-01004-3
- On a system of non-linear strongly coupled partial differential equations arising in biology. Proc. Conf. on Ordinary and Partial Differential Equation, Lectures Notes in Math. Vol. 846, Everitt and Sleeman (eds.), Springer-Verlag, New-York, 1981, pp. 290–298. (1981)
- 10.1007/BF00176379, J. Math. Biol. 33 (1995), 388–414. (1995) MR1320430DOI10.1007/BF00176379
- 10.1093/emboj/cdg176, The EMBO Journal 22 (2003), 1771–1779. (2003) DOI10.1093/emboj/cdg176
- Weak solutions to a parabolic-elliptic system of chemotaxis, J. Functional. Analysis 47 (2001), 17–51. (2001) MR1909263
- 10.1016/S0294-1449(00)00127-X, Anal. non Linéaire 17 (2000), 523–550. (2000) MR1782743DOI10.1016/S0294-1449(00)00127-X
- 10.1137/S0036139998342065, SIAM J. Appl. Math. 61 (2000), 183–212. (2000) Zbl0963.60093MR1776393DOI10.1137/S0036139998342065
- Work in preparation, .
- 10.1007/BF01208265, Comm. Math. Phys. 87 (1983), 567–576. (1983) Zbl0527.35023MR0691044DOI10.1007/BF01208265
- 10.1137/S0036141000337796, SIAM J. Math. Anal. 33 (2001), 763–785. (2001) MR1884721DOI10.1137/S0036141000337796
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.