PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic

Benoît Perthame

Applications of Mathematics (2004)

  • Volume: 49, Issue: 6, page 539-564
  • ISSN: 0862-7940

Abstract

top
Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia coli or amoeba like Dictyostelium discoïdeum exhibiting pointwise concentrations. For human endothelial cells, several experiments show the formation of networks that can be interpreted as the initiation of angiogenesis. To recover such patterns a hydrodynamical model seems better adapted. The two systems can be unified by a kinetic approach that was proposed for Escherichia coli, based on more precise experiments showing a movement by ‘jump and tumble’. This nonlinear kinetic model is interesting by itself and the existence theory is not complete. It is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-Segel model and in a hydrodynamical limit one recovers the model proposed for human endothelial cells. We also mention the mathematical interest of analyzing another degenerate parabolic system (exhibiting different properties) proposed to describe the angiogenesis phenomena i.e. the formation of capillary blood vessels.

How to cite

top

Perthame, Benoît. "PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic." Applications of Mathematics 49.6 (2004): 539-564. <http://eudml.org/doc/33200>.

@article{Perthame2004,
abstract = {Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia coli or amoeba like Dictyostelium discoïdeum exhibiting pointwise concentrations. For human endothelial cells, several experiments show the formation of networks that can be interpreted as the initiation of angiogenesis. To recover such patterns a hydrodynamical model seems better adapted. The two systems can be unified by a kinetic approach that was proposed for Escherichia coli, based on more precise experiments showing a movement by ‘jump and tumble’. This nonlinear kinetic model is interesting by itself and the existence theory is not complete. It is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-Segel model and in a hydrodynamical limit one recovers the model proposed for human endothelial cells. We also mention the mathematical interest of analyzing another degenerate parabolic system (exhibiting different properties) proposed to describe the angiogenesis phenomena i.e. the formation of capillary blood vessels.},
author = {Perthame, Benoît},
journal = {Applications of Mathematics},
keywords = {chemotaxis; angiogenesis; degenerate parabolic equations; kinetic equations; global weak solutions; blow-up; chemotaxis; angiogenesis; degenerate parabolic equations; kinetic equations; global weak solutions; blow-up},
language = {eng},
number = {6},
pages = {539-564},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic},
url = {http://eudml.org/doc/33200},
volume = {49},
year = {2004},
}

TY - JOUR
AU - Perthame, Benoît
TI - PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 6
SP - 539
EP - 564
AB - Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia coli or amoeba like Dictyostelium discoïdeum exhibiting pointwise concentrations. For human endothelial cells, several experiments show the formation of networks that can be interpreted as the initiation of angiogenesis. To recover such patterns a hydrodynamical model seems better adapted. The two systems can be unified by a kinetic approach that was proposed for Escherichia coli, based on more precise experiments showing a movement by ‘jump and tumble’. This nonlinear kinetic model is interesting by itself and the existence theory is not complete. It is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-Segel model and in a hydrodynamical limit one recovers the model proposed for human endothelial cells. We also mention the mathematical interest of analyzing another degenerate parabolic system (exhibiting different properties) proposed to describe the angiogenesis phenomena i.e. the formation of capillary blood vessels.
LA - eng
KW - chemotaxis; angiogenesis; degenerate parabolic equations; kinetic equations; global weak solutions; blow-up; chemotaxis; angiogenesis; degenerate parabolic equations; kinetic equations; global weak solutions; blow-up
UR - http://eudml.org/doc/33200
ER -

References

top
  1. 10.1007/BF00275919, J.  Math. Biol. 9 (1980), 147–177. (1980) Zbl0434.92001MR0661424DOI10.1007/BF00275919
  2. Biological motion. Proceedings of a workshop held in Königswinter, Germany, March 16–19, 1989. Lecture Notes in Biomathematics, 89, Springer-Verlag, Berlin, 1990. (1990) 
  3. 10.1016/S0893-9659(98)00041-X, Appl. Math. Lett. 11 (1998), 109–114. (1998) DOI10.1016/S0893-9659(98)00041-X
  4. 10.1090/S0002-9947-1984-0743736-0, Trans. Amer. Math. Soc. 284 (1984), 617–649. (1984) MR0743736DOI10.1090/S0002-9947-1984-0743736-0
  5. 10.1016/S0895-7177(00)00143-6, Math. Comput. Modelling 32 (2000), 413–452. (2000) MR1775113DOI10.1016/S0895-7177(00)00143-6
  6. 10.1103/PhysRevE.64.061904, Phys. Rev.  E 64 (2001). (2001) DOI10.1103/PhysRevE.64.061904
  7. Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl. 9 (1999), 347–359. (1999) Zbl0941.35009MR1690388
  8. 10.4064/cm-66-1-131-145, Colloq. Math. 66 (1993), 131–145. (1993) MR1242651DOI10.4064/cm-66-1-131-145
  9. 10.1016/S0034-4877(03)90013-9, Rep. Math. Phys. 52 (2003), 205–225. (2003) MR2016216DOI10.1016/S0034-4877(03)90013-9
  10. 10.1088/0951-7715/12/4/320, Nonlinearity 12 (1999), 1071–1098. (1999) MR1709861DOI10.1088/0951-7715/12/4/320
  11. 10.1016/S0006-3495(98)77880-4, Biophysical Journal 74 (1995), 1677–1693. (1995) DOI10.1016/S0006-3495(98)77880-4
  12. The Mathematical Theory of Dilute Gases, Applied Math. Sciences Vol. 106, Springer-Verlag, New York, 1994. (1994) MR1307620
  13. 10.1007/s00605-004-0234-7, Monatsh. Math. 142 (2004), 123–141. (2004) MR2065025DOI10.1007/s00605-004-0234-7
  14. 10.1016/0895-7177(96)00019-2, Math. Comput. Modelling 23 (1996), 47–87. (1996) DOI10.1016/0895-7177(96)00019-2
  15. Macroscopic modelling of the growth and developement of tumor masses, Preprint No.  27, Politecnico di Torino, 2000. (2000) 
  16. 10.1016/S1631-073X(02)00008-0, C. R. Acad. Sci.  Paris, Ser.  I 336 (2003), 141–146. (2003) MR1969568DOI10.1016/S1631-073X(02)00008-0
  17. 10.1007/s00032-003-0026-x, Milano J.  Math. 72 (2004), 1–29. (2004) MR2099126DOI10.1007/s00032-003-0026-x
  18. 10.1016/S0893-9659(00)00044-6, Appl. Math. Lett. 13 (2000), 127–132. (2000) MR1760274DOI10.1016/S0893-9659(00)00044-6
  19. Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math.  J. 49 (2000), 1175–1198. (2000) MR1803225
  20. Cattaneo models for chemotaxis, numerical solution and pattern formation, J.  Math. Biol. 46 (2003), 461–478. (2003) MR1963070
  21. Optimal critical mass in the two dimensional Keller-Segel model in 2 , C. R. Acad. Sci. (2004) (to appear). (ARRAY(0x96e3808)) MR2103197
  22. Kinetic Models for Chemotaxis. ANUM preprint, (2003). (2003) MR2093271
  23. Partial Differential Equations, Amer. Math. Soc., Providence, 1998. (1998) Zbl0902.35002
  24. Derivation of hyperbolic models for chemosensitive movement. Preprint, Ecole Normale Supérieure, 2003. (2003) MR2120548
  25. 10.1137/S0036141001385046, SIAM J.  Math. Anal. 33 (2002), 1330–1355. (2002) MR1920634DOI10.1137/S0036141001385046
  26. 10.1016/S0022-247X(02)00147-6, J.  Math. Anal. Appl. 272 (2002), 138–163. (2002) MR1930708DOI10.1016/S0022-247X(02)00147-6
  27. 10.1002/mana.19981950106, Math. Nachr. 195 (1998), 77–114. (1998) MR1654677DOI10.1002/mana.19981950106
  28. 10.1103/PhysRevLett.90.118101, Phys. Rev. Lett. 90 (2003), . (2003) DOI10.1103/PhysRevLett.90.118101
  29. 10.1017/S0308210500000676, Proc. Roy. Soc. Edinburgh Sect.  A 130 (2000), 1259–1273. (2000) MR1809103DOI10.1017/S0308210500000676
  30. The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. (1996) Zbl0858.76001MR1379589
  31. 10.1007/BF01445268, Math. Ann. 306 (1996), 583–623. (1996) MR1415081DOI10.1007/BF01445268
  32. 10.1088/0951-7715/10/6/016, Nonlinearity 10 (1997), 1739–1754. (1997) MR1483563DOI10.1088/0951-7715/10/6/016
  33. 10.1137/S0036139999358167, SIAM  J.  Appl. Math. 61 (2000), 751–775. (2000) MR1788017DOI10.1137/S0036139999358167
  34. 10.4064/cm87-1-7, Colloq. Math. 87 (2001), 113–127. (2001) Zbl0966.35022MR1812147DOI10.4064/cm87-1-7
  35. From  1970 until present: the Keller-Segel model in chemotaxis and its consequences, Jahresber. Dtsch. Math.-Ver. Vol. 105, 2003, pp. 103–165. (2003) Zbl1071.35001MR2013508
  36. Global solutions of nonlinear transport equations for chemosensitive movement, SIAM J. Math. Anal (to appear). (to appear) MR2139206
  37. 10.1090/S0002-9947-1992-1046835-6, Trans. Amer. Math. Soc. 329 (1992), 819–824. (1992) MR1046835DOI10.1090/S0002-9947-1992-1046835-6
  38. Assessing the Keller-Segel model: How has it fared? Biological growth and spread, Proc. Conf., Heidelberg,  1979. Lecture Notes in Biomath. Vol. 38, Springer-Verlag, Berlin-New York, 1980, pp. 379–387. (1980) MR0609374
  39. 10.1016/0022-5193(70)90092-5, J.  Theoret. Biol. 26 (1970), 399–415. (1970) DOI10.1016/0022-5193(70)90092-5
  40. 10.1016/0022-5193(71)90050-6, J.  Theoret. Biol. 30 (1971), 225–234. (1971) DOI10.1016/0022-5193(71)90050-6
  41. 10.1016/0022-5193(71)90051-8, J.  Theoret. Biol. 30 (1971), 235–248. (1971) DOI10.1016/0022-5193(71)90051-8
  42. 10.1137/S0036139995291106, SIAM J.  Appl. Math. 57 (1997), 683–730. (1997) MR1450846DOI10.1137/S0036139995291106
  43. 10.1002/mma.212, Math. Methods Appl. Sci. 24 (2001), 405–426. (2001) MR1821934DOI10.1002/mma.212
  44. Mathematical modelling of the onset of capillary formation initiating angiogenesis, J. Math. Biol. 42 (2001), 195–238. (2001) MR1828815
  45. Applications of mathematical modelling to biological pattern formation. Coherent Structures in Complex Systems (Sitges, 2000), Lecture Notes in Phys. Vol.  567, Springer-Verlag, Berlin, 2001, pp. 205–217. (2001) MR1995108
  46. 10.1051/proc:2002018, ESAIM Proc. 12 (2002 (electronic)), 108–114. (2002 (electronic)) DOI10.1051/proc:2002018
  47. 10.1051/m2an:2003048, ESAIM: Math. Model. Numer. Anal. 37 (2003), 617–630. (2003) MR2018433DOI10.1051/m2an:2003048
  48. General entropy equations for structured population models and scattering, C.  R.  Acad. Sci. Paris (to appear). (to appear) MR2065377
  49. Mathematical Biology, Vol.  2, third revised edition. Spatial Models and Biomedical Applications, Springer-Verlag, , 2003. (2003) MR1952568
  50. Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995), 581–601. (1995) Zbl0843.92007MR1361006
  51. Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 145–156. (1998) MR1623326
  52. 10.1007/s002050100139, Arch. Rational. Mech. Anal. 158 (2001), 29–59. (2001) MR1834113DOI10.1007/s002050100139
  53. 10.1137/S0036139995288976, SIAM J.  Appl. Math. 57 (1997), 1044–1081. (1997) MR1462051DOI10.1137/S0036139995288976
  54. 10.1007/BF00277392, J.  Math. Biol. 26 (1988), 263–298. (1988) MR0949094DOI10.1007/BF00277392
  55. 10.1007/BF02476407, Bull. Math. Biophys. 15 (1953), 311–338. (1953) MR0081586DOI10.1007/BF02476407
  56. 10.1090/S0273-0979-04-01004-3, Bull.  Amer. Math. Soc. (NS) 41 (2004), 205–244. (2004) Zbl1151.82351MR2043752DOI10.1090/S0273-0979-04-01004-3
  57. On a system of non-linear strongly coupled partial differential equations arising in biology. Proc. Conf. on  Ordinary and Partial Differential Equation, Lectures Notes in Math. Vol. 846, Everitt and Sleeman (eds.), Springer-Verlag, New-York, 1981, pp. 290–298. (1981) 
  58. 10.1007/BF00176379, J.  Math. Biol. 33 (1995), 388–414. (1995) MR1320430DOI10.1007/BF00176379
  59. 10.1093/emboj/cdg176, The EMBO Journal 22 (2003), 1771–1779. (2003) DOI10.1093/emboj/cdg176
  60. Weak solutions to a parabolic-elliptic system of chemotaxis, J.  Functional. Analysis 47 (2001), 17–51. (2001) MR1909263
  61. 10.1016/S0294-1449(00)00127-X, Anal. non Linéaire 17 (2000), 523–550. (2000) MR1782743DOI10.1016/S0294-1449(00)00127-X
  62. 10.1137/S0036139998342065, SIAM J.  Appl. Math. 61 (2000), 183–212. (2000) Zbl0963.60093MR1776393DOI10.1137/S0036139998342065
  63. Work in preparation, . 
  64. 10.1007/BF01208265, Comm. Math. Phys. 87 (1983), 567–576. (1983) Zbl0527.35023MR0691044DOI10.1007/BF01208265
  65. 10.1137/S0036141000337796, SIAM J.  Math. Anal. 33 (2001), 763–785. (2001) MR1884721DOI10.1137/S0036141000337796

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.