On a linear homogeneous congruence
Colloquium Mathematicae (2006)
- Volume: 106, Issue: 2, page 283-292
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topA. Schinzel, and M. Zakarczemny. "On a linear homogeneous congruence." Colloquium Mathematicae 106.2 (2006): 283-292. <http://eudml.org/doc/283881>.
@article{A2006,
abstract = {The number of solutions of the congruence $a₁x₁ + ⋯ +a_kx_k ≡ 0(mod n)$ in the box $0 ≤ x_i ≤ b_i$ is estimated from below in the best possible way, provided for all i,j either $(a_i,n)|(a_j,n)$ or $(a_j,n)|(a_i,n)$ or $n|[a_i,a_j]$.},
author = {A. Schinzel, M. Zakarczemny},
journal = {Colloquium Mathematicae},
keywords = {linear homogeneous congruence},
language = {eng},
number = {2},
pages = {283-292},
title = {On a linear homogeneous congruence},
url = {http://eudml.org/doc/283881},
volume = {106},
year = {2006},
}
TY - JOUR
AU - A. Schinzel
AU - M. Zakarczemny
TI - On a linear homogeneous congruence
JO - Colloquium Mathematicae
PY - 2006
VL - 106
IS - 2
SP - 283
EP - 292
AB - The number of solutions of the congruence $a₁x₁ + ⋯ +a_kx_k ≡ 0(mod n)$ in the box $0 ≤ x_i ≤ b_i$ is estimated from below in the best possible way, provided for all i,j either $(a_i,n)|(a_j,n)$ or $(a_j,n)|(a_i,n)$ or $n|[a_i,a_j]$.
LA - eng
KW - linear homogeneous congruence
UR - http://eudml.org/doc/283881
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.