The essential spectrum of holomorphic Toeplitz operators on H p spaces

Mats Andersson; Sebastian Sandberg

Studia Mathematica (2003)

  • Volume: 154, Issue: 3, page 223-231
  • ISSN: 0039-3223

Abstract

top
We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators T g on H p ( D ) , where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of T g provided that g - 1 ( 0 ) is a compact subset of D.

How to cite

top

Mats Andersson, and Sebastian Sandberg. "The essential spectrum of holomorphic Toeplitz operators on $H^{p}$ spaces." Studia Mathematica 154.3 (2003): 223-231. <http://eudml.org/doc/284593>.

@article{MatsAndersson2003,
abstract = {We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators $T_\{g\}$ on $H^\{p\}(D)$, where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of $T_\{g\}$ provided that $g^\{-1\}(0)$ is a compact subset of D.},
author = {Mats Andersson, Sebastian Sandberg},
journal = {Studia Mathematica},
keywords = {essential spectrum; Toeplitz operators; Taylor spectrum; strictly pseudoconvex domain; index},
language = {eng},
number = {3},
pages = {223-231},
title = {The essential spectrum of holomorphic Toeplitz operators on $H^\{p\}$ spaces},
url = {http://eudml.org/doc/284593},
volume = {154},
year = {2003},
}

TY - JOUR
AU - Mats Andersson
AU - Sebastian Sandberg
TI - The essential spectrum of holomorphic Toeplitz operators on $H^{p}$ spaces
JO - Studia Mathematica
PY - 2003
VL - 154
IS - 3
SP - 223
EP - 231
AB - We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators $T_{g}$ on $H^{p}(D)$, where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of $T_{g}$ provided that $g^{-1}(0)$ is a compact subset of D.
LA - eng
KW - essential spectrum; Toeplitz operators; Taylor spectrum; strictly pseudoconvex domain; index
UR - http://eudml.org/doc/284593
ER -

NotesEmbed ?

top

You must be logged in to post comments.