top
We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators on , where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of provided that is a compact subset of D.
Mats Andersson, and Sebastian Sandberg. "The essential spectrum of holomorphic Toeplitz operators on $H^{p}$ spaces." Studia Mathematica 154.3 (2003): 223-231. <http://eudml.org/doc/284593>.
@article{MatsAndersson2003, abstract = {We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators $T_\{g\}$ on $H^\{p\}(D)$, where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of $T_\{g\}$ provided that $g^\{-1\}(0)$ is a compact subset of D.}, author = {Mats Andersson, Sebastian Sandberg}, journal = {Studia Mathematica}, keywords = {essential spectrum; Toeplitz operators; Taylor spectrum; strictly pseudoconvex domain; index}, language = {eng}, number = {3}, pages = {223-231}, title = {The essential spectrum of holomorphic Toeplitz operators on $H^\{p\}$ spaces}, url = {http://eudml.org/doc/284593}, volume = {154}, year = {2003}, }
TY - JOUR AU - Mats Andersson AU - Sebastian Sandberg TI - The essential spectrum of holomorphic Toeplitz operators on $H^{p}$ spaces JO - Studia Mathematica PY - 2003 VL - 154 IS - 3 SP - 223 EP - 231 AB - We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators $T_{g}$ on $H^{p}(D)$, where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of $T_{g}$ provided that $g^{-1}(0)$ is a compact subset of D. LA - eng KW - essential spectrum; Toeplitz operators; Taylor spectrum; strictly pseudoconvex domain; index UR - http://eudml.org/doc/284593 ER -