On Denjoy type extensions of the Pettis integral
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 737-750
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNaralenkov, Kirill. "On Denjoy type extensions of the Pettis integral." Czechoslovak Mathematical Journal 60.3 (2010): 737-750. <http://eudml.org/doc/38039>.
@article{Naralenkov2010,
abstract = {In this paper two Denjoy type extensions of the Pettis integral are defined and studied. These integrals are shown to extend the Pettis integral in a natural way analogous to that in which the Denjoy integrals extend the Lebesgue integral for real-valued functions. The connection between some Denjoy type extensions of the Pettis integral is examined.},
author = {Naralenkov, Kirill},
journal = {Czechoslovak Mathematical Journal},
keywords = {scalar derivative; approximate scalar derivative; absolute continuity; bounded variation; $VBG$ function; $ACG$ function; Pettis integral; Denjoy-Pettis integral; scalar derivative; approximate scalar derivative; absolute continuity; bounded variation; function; function; Pettis integral; Denjoy-Pettis integral},
language = {eng},
number = {3},
pages = {737-750},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Denjoy type extensions of the Pettis integral},
url = {http://eudml.org/doc/38039},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Naralenkov, Kirill
TI - On Denjoy type extensions of the Pettis integral
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 737
EP - 750
AB - In this paper two Denjoy type extensions of the Pettis integral are defined and studied. These integrals are shown to extend the Pettis integral in a natural way analogous to that in which the Denjoy integrals extend the Lebesgue integral for real-valued functions. The connection between some Denjoy type extensions of the Pettis integral is examined.
LA - eng
KW - scalar derivative; approximate scalar derivative; absolute continuity; bounded variation; $VBG$ function; $ACG$ function; Pettis integral; Denjoy-Pettis integral; scalar derivative; approximate scalar derivative; absolute continuity; bounded variation; function; function; Pettis integral; Denjoy-Pettis integral
UR - http://eudml.org/doc/38039
ER -
References
top- Birkhoff, G., Integration of functions with values in a Banach space, Trans. Am. Math. Soc. 38 (1935), 357-378. (1935) Zbl0013.00803MR1501815
- Piazza, L. Di, Musiał, K., 10.4064/sm176-2-4, Stud. Math. 176 (2006), 159-176. (2006) MR2264361DOI10.4064/sm176-2-4
- Diestel, J., 10.1007/978-1-4612-5200-9, Springer-Verlag New York-Heidelberg-Berlin (1984). (1984) MR0737004DOI10.1007/978-1-4612-5200-9
- Fremlin, D. H., Mendoza, J., 10.1215/ijm/1255986891, Ill. J. Math. 38 (1994), 127-147. (1994) Zbl0790.28004MR1245838DOI10.1215/ijm/1255986891
- Gámez, J. L., Mendoza, J., On Denjoy-Dunford and Denjoy-Pettis integrals, Stud. Math. 130 (1998), 115-133. (1998) MR1623348
- Gordon, R. A., 10.4064/sm-92-1-73-91, Stud. Math. 92 (1989), 73-91. (1989) Zbl0681.28006MR0984851DOI10.4064/sm-92-1-73-91
- Gordon, R. A., 10.1090/gsm/004/09, American Mathematical Society (AMS) Providence (1994). (1994) MR1288751DOI10.1090/gsm/004/09
- Hildebrandt, T. H., 10.1090/S0002-9904-1953-09694-X, Bull. Am. Math. Soc. 59 (1953), 111-139. (1953) Zbl0051.04201MR0053191DOI10.1090/S0002-9904-1953-09694-X
- Lee, Peng Yee, Výborný, R., The Integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series, Vol. 14, Cambridge University Press Cambridge (2000). (2000) MR1756319
- Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92, Springer Berlin-Heidelberg-New York (1977). (1977) MR0500056
- Naralenkov, K. M., 10.14321/realanalexch.30.1.0235, Real Anal. Exch. 30 (2004/2005), 235-260. (2004) MR2127529DOI10.14321/realanalexch.30.1.0235
- Pettis, B. J., 10.1090/S0002-9947-1938-1501970-8, Trans. Am. Math. Soc. 44 (1938), 277-304. (1938) Zbl0019.41603MR1501970DOI10.1090/S0002-9947-1938-1501970-8
- Saks, S., Theory of the Integral, Dover Publications Inc. New York (1964). (1964) MR0167578
- Talagrand, M., Pettis Integral and Measure Theory. Mem. Am. Math. Soc. No. 307, (1984). (1984) MR0756174
- Wang, Chonghu, Yang, Zhenhua, 10.1216/rmjm/1022008999, Rocky Mt. J. Math. 30 (2000), 393-400. (2000) Zbl0986.46028MR1763820DOI10.1216/rmjm/1022008999
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.