Linear maps on Mₙ(ℂ) preserving the local spectral radius

Abdellatif Bourhim; Vivien G. Miller

Studia Mathematica (2008)

  • Volume: 188, Issue: 1, page 67-75
  • ISSN: 0039-3223

Abstract

top
Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and Φ ( T ) = α A T A - 1 for all T ∈ Mₙ(ℂ).

How to cite

top

Abdellatif Bourhim, and Vivien G. Miller. "Linear maps on Mₙ(ℂ) preserving the local spectral radius." Studia Mathematica 188.1 (2008): 67-75. <http://eudml.org/doc/284753>.

@article{AbdellatifBourhim2008,
abstract = {Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and $Φ(T) = αATA^\{-1\}$ for all T ∈ Mₙ(ℂ).},
author = {Abdellatif Bourhim, Vivien G. Miller},
journal = {Studia Mathematica},
keywords = {linear preservers; spectrally bounded map; local spectrum; local spectral radius; single-valued extension property},
language = {eng},
number = {1},
pages = {67-75},
title = {Linear maps on Mₙ(ℂ) preserving the local spectral radius},
url = {http://eudml.org/doc/284753},
volume = {188},
year = {2008},
}

TY - JOUR
AU - Abdellatif Bourhim
AU - Vivien G. Miller
TI - Linear maps on Mₙ(ℂ) preserving the local spectral radius
JO - Studia Mathematica
PY - 2008
VL - 188
IS - 1
SP - 67
EP - 75
AB - Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and $Φ(T) = αATA^{-1}$ for all T ∈ Mₙ(ℂ).
LA - eng
KW - linear preservers; spectrally bounded map; local spectrum; local spectral radius; single-valued extension property
UR - http://eudml.org/doc/284753
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.