top
Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and for all T ∈ Mₙ(ℂ).
Abdellatif Bourhim, and Vivien G. Miller. "Linear maps on Mₙ(ℂ) preserving the local spectral radius." Studia Mathematica 188.1 (2008): 67-75. <http://eudml.org/doc/284753>.
@article{AbdellatifBourhim2008, abstract = {Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and $Φ(T) = αATA^\{-1\}$ for all T ∈ Mₙ(ℂ).}, author = {Abdellatif Bourhim, Vivien G. Miller}, journal = {Studia Mathematica}, keywords = {linear preservers; spectrally bounded map; local spectrum; local spectral radius; single-valued extension property}, language = {eng}, number = {1}, pages = {67-75}, title = {Linear maps on Mₙ(ℂ) preserving the local spectral radius}, url = {http://eudml.org/doc/284753}, volume = {188}, year = {2008}, }
TY - JOUR AU - Abdellatif Bourhim AU - Vivien G. Miller TI - Linear maps on Mₙ(ℂ) preserving the local spectral radius JO - Studia Mathematica PY - 2008 VL - 188 IS - 1 SP - 67 EP - 75 AB - Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and $Φ(T) = αATA^{-1}$ for all T ∈ Mₙ(ℂ). LA - eng KW - linear preservers; spectrally bounded map; local spectrum; local spectral radius; single-valued extension property UR - http://eudml.org/doc/284753 ER -