Rank and the Drazin inverse in Banach algebras
R. M. Brits; L. Lindeboom; H. Raubenheimer
Studia Mathematica (2006)
- Volume: 177, Issue: 3, page 211-224
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topR. M. Brits, L. Lindeboom, and H. Raubenheimer. "Rank and the Drazin inverse in Banach algebras." Studia Mathematica 177.3 (2006): 211-224. <http://eudml.org/doc/285269>.
@article{R2006,
abstract = {Let A be an arbitrary, unital and semisimple Banach algebra with nonzero socle. We investigate the relationship between the spectral rank (defined by B. Aupetit and H. Mouton) and the Drazin index for elements belonging to the socle of A. In particular, we show that the results for the finite-dimensional case can be extended to the (infinite-dimensional) socle of A.},
author = {R. M. Brits, L. Lindeboom, H. Raubenheimer},
journal = {Studia Mathematica},
keywords = {rank; Drazin inverse; semisimple Banach algebra},
language = {eng},
number = {3},
pages = {211-224},
title = {Rank and the Drazin inverse in Banach algebras},
url = {http://eudml.org/doc/285269},
volume = {177},
year = {2006},
}
TY - JOUR
AU - R. M. Brits
AU - L. Lindeboom
AU - H. Raubenheimer
TI - Rank and the Drazin inverse in Banach algebras
JO - Studia Mathematica
PY - 2006
VL - 177
IS - 3
SP - 211
EP - 224
AB - Let A be an arbitrary, unital and semisimple Banach algebra with nonzero socle. We investigate the relationship between the spectral rank (defined by B. Aupetit and H. Mouton) and the Drazin index for elements belonging to the socle of A. In particular, we show that the results for the finite-dimensional case can be extended to the (infinite-dimensional) socle of A.
LA - eng
KW - rank; Drazin inverse; semisimple Banach algebra
UR - http://eudml.org/doc/285269
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.