Cycle Double Covers of Infinite Planar Graphs
Discussiones Mathematicae Graph Theory (2016)
- Volume: 36, Issue: 3, page 523-544
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMohammad Javaheri. "Cycle Double Covers of Infinite Planar Graphs." Discussiones Mathematicae Graph Theory 36.3 (2016): 523-544. <http://eudml.org/doc/285515>.
@article{MohammadJavaheri2016,
abstract = {In this paper, we study the existence of cycle double covers for infinite planar graphs. We show that every infinite locally finite bridgeless k-indivisible graph with a 2-basis admits a cycle double cover.},
author = {Mohammad Javaheri},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {cycle double cover; infinite planar graph},
language = {eng},
number = {3},
pages = {523-544},
title = {Cycle Double Covers of Infinite Planar Graphs},
url = {http://eudml.org/doc/285515},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Mohammad Javaheri
TI - Cycle Double Covers of Infinite Planar Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 3
SP - 523
EP - 544
AB - In this paper, we study the existence of cycle double covers for infinite planar graphs. We show that every infinite locally finite bridgeless k-indivisible graph with a 2-basis admits a cycle double cover.
LA - eng
KW - cycle double cover; infinite planar graph
UR - http://eudml.org/doc/285515
ER -
References
top- [1] J.C. Bermond, B. Jackson and F. Jaeger, Shortest coverings of graphs with cycles, J. Combin. Theory Ser. B 35 (1993) 297-308. doi:10.1016/0095-8956(83)90056-4[Crossref]
- [2] G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013) 468-488. doi:10.1016/j.jctb.2013.05.001[WoS][Crossref] Zbl1301.05119
- [3] H. Bruhn and M. Stein, MacLane’s planarity criterion for locally finite graphs, J. Combin. Theory Ser. B 96 (2006) 225-239. doi:10.1016/j.jctb.2005.07.005[Crossref]
- [4] M. Chan, A survey of the cycle double cover conjecture, (2009).
- [5] N.G. de Bruijn and P. Erdős, A colour problem for infinite graphs and a problem in the theory of relations, Nederl. Akad. Wetensch. Porc. Ser. A 54 (1951) 369-373. Zbl0044.38203
- [6] R. Diestel, The cycle space of an infinite graph, Combin. Probab. Comput. 14 (2005) 59-79. doi:10.1017/S0963548304006686[Crossref] Zbl1067.05037
- [7] R. Diestel and D. Kühl, On infinite cycles I, Combinatorica 24 (2004) 69-89. doi:10.1007/s00493-004-0005-z[Crossref] Zbl1063.05076
- [8] R. Diestel and D. Kühl, On infinite cycles II, Combinatorica 24 (2004) 91-116. doi:10.1007/s00493-004-0006-y[Crossref] Zbl1063.05076
- [9] G. Fan, Covering graphs by cycles, SIAM J. Discrete Math. 5 (1992) 491-496. doi:10.1137/0405039[Crossref] Zbl0777.05087
- [10] I. Fary, On straight line representations of planar graphs, Acta Sci. Math. (Szeged) 11 (1984) 229-233.
- [11] H. Fleischner, Proof of the strong 2-cover conjecture for planar graphs, J. Combin. Theory Ser. B 40 (1986) 229-230. doi:10.1016/0095-8956(86)90080-8[Crossref] Zbl0587.05041
- [12] H. Fleischner and R. Häggkvist, Circuit double covers in special types of cubic graphs, Discrete Math. 309 (2009) 5724-5728. doi:10.1016/j.disc.2008.05.018[WoS][Crossref] Zbl1218.05129
- [13] L. Goddyn, A girth requirement for the double cycle cover conjecture, Ann. Discrete Math. 27 (1985) 13-26. doi:10.1016/s0304-0208(08)72994-3[Crossref] Zbl0585.05013
- [14] J. Hägglund and K. Markström, On stable cycles and cycle double covers of graphs with large circumference, Discrete Math. 312 (2012) 2540-2544. doi:10.1016/j.disc.2011.08.024[WoS][Crossref] Zbl1246.05086
- [15] A. Hoffmann-Ostenhof, A note on 5-cycle double covers, Graphs Combin. 29 (2013) 977-979. doi:10.1007/s00373-012-1169-8[Crossref] Zbl1268.05158
- [16] A. Huck, Reducible configurations for the cycle double cover conjecture, Discrete Appl. Math. 99 (2000) 71-90. doi:10.1016/S0166-218X(99)00126-2[Crossref] Zbl0966.05045
- [17] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221-239. doi:10.2307/2319844[Crossref] Zbl0311.05109
- [18] F. Jaeger, A survey of the cycle double cover conjecture, Ann. Discrete Math. 27 (1985) 1-12. doi:10.1016/s0304-0208(08)72993-1[Crossref]
- [19] F. Jaeger, On circular flows in graphs, Proc. Colloq. Math. Janos Bolyai (1982) 391-402.
- [20] S. MacLane, A combinatorial condition for planar graphs, Fund. Math. 28 (1937) 22-32. Zbl0015.37501
- [21] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293-309. doi:10.1016/0012-365X(80)90158-2[Crossref]
- [22] P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981) 130-135. doi:10.1016/0095-8956(81)90058-7[Crossref] Zbl0474.05028
- [23] G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Aust. Math. Soc. 8 (1973) 367-387. doi:10.1017/S0004972700042660[Crossref] Zbl0249.05111
- [24] P.G. Tait, Remarks on the colourings of maps, Proc. Roy. Soc. Edinburgh Sect. A 10 (1880) 729.[Crossref]
- [25] C. Thomassen, Planarity and duality of finite and infinite graphs, J. Combin. Theory Ser. B 29 (1980) 244-271. doi:10.1016/0095-8956(80)90083-0[Crossref]
- [26] C. Thomassen, Straight line representation of infinite planar graphs, J. Lond. Math. Soc. (2) 16 (1977) 411-423. doi:10.1112/jlms/s2-16.3.411[Crossref] Zbl0373.05032
- [27] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80-91. doi:10.4153/CJM-1954-010-9[Crossref]
- [28] K. Wagner, Fastplättbare Graphen, J. Combin. Theory 3 (1967) 326-365. doi:10.1016/S0021-9800(67)80103-0[Crossref]
- [29] R. Xu, Strong 5-cycle double covers of graphs, Graphs Combin. 30 (2014) 495-499. doi:10.1007/s00373-012-1266-8[Crossref] Zbl1298.05180
- [30] D. Ye, Perfect Matching and Circuit Cover of Graphs (Ph.D. Dissertation, West Virginia University, 2012).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.