Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants

Kinkar Ch. Das; Yujun Yang; Kexiang Xu

Discussiones Mathematicae Graph Theory (2016)

  • Volume: 36, Issue: 3, page 695-707
  • ISSN: 2083-5892

Abstract

top
Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established.

How to cite

top

Kinkar Ch. Das, Yujun Yang, and Kexiang Xu. "Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants." Discussiones Mathematicae Graph Theory 36.3 (2016): 695-707. <http://eudml.org/doc/285785>.

@article{KinkarCh2016,
abstract = {Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established.},
author = {Kinkar Ch. Das, Yujun Yang, Kexiang Xu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {resistance distance; Kirchhoff index; additive degree-Kirchhoff index; multiplicative degree-Kirchhoff index; Nordhaus-Gaddum-type result},
language = {eng},
number = {3},
pages = {695-707},
title = {Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants},
url = {http://eudml.org/doc/285785},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Kinkar Ch. Das
AU - Yujun Yang
AU - Kexiang Xu
TI - Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 3
SP - 695
EP - 707
AB - Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established.
LA - eng
KW - resistance distance; Kirchhoff index; additive degree-Kirchhoff index; multiplicative degree-Kirchhoff index; Nordhaus-Gaddum-type result
UR - http://eudml.org/doc/285785
ER -

References

top
  1. [1] D. Bonchev, A.T. Balaban, X. Liu and D.J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994) 1-20. doi:10.1002/qua.560500102[Crossref] 
  2. [2] H. Chen and F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155 (2007) 654-661. doi:10.1016/j.dam.2006.09.008[WoS][Crossref] 
  3. [3] H. Chen and F. Zhang, Resistance distance local rules, J. Math. Chem. 44 (2008) 405-417. doi:10.1007/s10910-007-9317-8[Crossref] Zbl1217.05082
  4. [4] P. Dankelmann, H.C. Swart and P. van den Berg, Diameter and inverse degree, Discrete Math. 308 (2008) 670-673. doi:10.1016/j.disc.2007.07.053[WoS][Crossref] Zbl1142.05022
  5. [5] K.Ch. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514-521. doi:10.1007/s10910-008-9475-3[WoS][Crossref] Zbl1200.92048
  6. [6] R.M. Foster, The average impedance of an electrical network, in: Contributions to Applied Mechanics (Edwards Bros., Michigan, Ann Arbor, 1949) 333-340. Zbl0040.41801
  7. [7] I. Gutman, L. Feng and G. Yu, Degree resistance distance of unicyclic graphs, Trans. Comb. 1 (2012) 27-40. Zbl1301.05103
  8. [8] I. Gutman and B. Mohar, The Quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996) 982-985. doi:10.1021/ci960007t[Crossref] 
  9. [9] D.J. Klein, Graph geometry, graph metrics, & Wiener , MATCH Commun. Math. Comput. Chem. 35 (1997) 7-27. Zbl1014.05063
  10. [10] D.J. Klein, Centrality measure in graphs, J. Math. Chem. 47 (2010) 1209-1223. doi:10.1007/s10910-009-9635-0[Crossref] Zbl05721708
  11. [11] D.J. Klein and O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit , J. Math. Chem. 30 (2001) 271-287. doi:10.1023/A:1015119609980[Crossref] Zbl1008.05082
  12. [12] D.J. Klein and M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81-95. doi:10.1007/BF01164627[Crossref] 
  13. [13] D.J. Klein and H.-Y. Zhu, Distances and volumina for graphs, J. Math. Chem. 23 (1998) 179-195. doi:10.1023/A:1019108905697[Crossref] Zbl0908.05038
  14. [14] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177. doi:10.2307/2306658[Crossref] Zbl0070.18503
  15. [15] J.L. Palacios and J.M. Renom, Another look at the degree-Kirchhoff index , Int. J. Quantum Chem. 111 (2011) 3453-3455. doi:10.1002/qua.22725[Crossref][WoS] 
  16. [16] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20. doi:10.1021/ja01193a005[Crossref] 
  17. [17] W. Xiao and I. Gutman, Resistance distance and Laplacian spectrum, Theor. Chem. Acc. 110 (2003) 284-289. doi:10.1007/s00214-003-0460-4[Crossref] 
  18. [18] Y. Yang, Relations between resistance distances of a graph and its complement or its contraction, Croat. Chem. Acta 87 (2014) 61-68. doi:10.5562/cca2318[WoS][Crossref] 
  19. [19] Y. Yang, H. Zhang and D.J. Klein, New Nardhaus-Gaddum-type results for the Kirchhoff index , J. Math. Chem. 49 (2011) 1587-1598. doi:10.1007/s10910-011-9845-0[Crossref][WoS] Zbl1227.92054
  20. [20] B. Zhou and N. Trinajstić, A note on Kirchhoff index , Chem. Phys. Lett. 455 (2008) 120-123. doi:10.1016/j.cplett.2008.02.060[WoS][Crossref] 
  21. [21] B. Zhou and N. Trinajstić, On resistance-distance and Kirchhoff index , J. Math. Chem. 46 (2009) 283-289. doi:10.1007/s10910-008-9459-3[WoS][Crossref] Zbl1187.92092
  22. [22] H.-Y. Zhu, D.J. Klein and I. Lukovits, Extensions of the Wiener number , J. Chem. Inf. Comput. Sci. 36 (1996) 420-428. doi:10.1021/ci950116s[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.