Measurability of multifunctions of two variables

Grażyna Kwiecińska

  • 2008

Abstract

top
We consider multifunctions F of two variables, with values in a topological space, whose first argument ranges over a measurable space, and second over a space with various possible structures: topological, metric (with a differentiation basis if needed), normed linear, etc. We are mainly interested in product measurability and superpositional measurability of F. Some connections between classes of multifunctions with these properties are considered. In Chapter 2, several product measurability results are proved for multifunctions which are measurable in the first and satisfy some special hypothesis in the second variable, e.g. • are either right continuous or left continuous in some sense, • are approximately h-equicontinuous with respect to a differentiation basis, • are lower semicontinuous and upper quasi-continuous, • are both upper and lower strong quasi-continuous with respect to a differentiation basis, • are derivatives. Chapter 3 is devoted to superpositional measurability of multifunctions. Some of the results of this chapter are consequences of results of Chapter 2 and Zygmunt's theorem on superpositional measurability of multifunctions which are measurable with respect to the product of a complete σ-field and the σ-field of Borel subsets of a Polish space. In general, a product measurable multifunction need not be superpositionally measurable. We prove that (in suitable spaces) multifunctions which are product measurable with respect to a σ-field more general than the product σ-field above and which also fulfill certain density conditions in the second variable are also superpositionally measurable. Counterexamples are also given to emphasize the need for some of the hypotheses.

How to cite

top

Grażyna Kwiecińska. Measurability of multifunctions of two variables. 2008. <http://eudml.org/doc/285954>.

@book{GrażynaKwiecińska2008,
abstract = {We consider multifunctions F of two variables, with values in a topological space, whose first argument ranges over a measurable space, and second over a space with various possible structures: topological, metric (with a differentiation basis if needed), normed linear, etc. We are mainly interested in product measurability and superpositional measurability of F. Some connections between classes of multifunctions with these properties are considered. In Chapter 2, several product measurability results are proved for multifunctions which are measurable in the first and satisfy some special hypothesis in the second variable, e.g. • are either right continuous or left continuous in some sense, • are approximately h-equicontinuous with respect to a differentiation basis, • are lower semicontinuous and upper quasi-continuous, • are both upper and lower strong quasi-continuous with respect to a differentiation basis, • are derivatives. Chapter 3 is devoted to superpositional measurability of multifunctions. Some of the results of this chapter are consequences of results of Chapter 2 and Zygmunt's theorem on superpositional measurability of multifunctions which are measurable with respect to the product of a complete σ-field and the σ-field of Borel subsets of a Polish space. In general, a product measurable multifunction need not be superpositionally measurable. We prove that (in suitable spaces) multifunctions which are product measurable with respect to a σ-field more general than the product σ-field above and which also fulfill certain density conditions in the second variable are also superpositionally measurable. Counterexamples are also given to emphasize the need for some of the hypotheses.},
author = {Grażyna Kwiecińska},
keywords = {multifunction; two variables; measurability; sup-measurability; approximate continuity; strong quasi-continuity; differentiability; derivative},
language = {eng},
title = {Measurability of multifunctions of two variables},
url = {http://eudml.org/doc/285954},
year = {2008},
}

TY - BOOK
AU - Grażyna Kwiecińska
TI - Measurability of multifunctions of two variables
PY - 2008
AB - We consider multifunctions F of two variables, with values in a topological space, whose first argument ranges over a measurable space, and second over a space with various possible structures: topological, metric (with a differentiation basis if needed), normed linear, etc. We are mainly interested in product measurability and superpositional measurability of F. Some connections between classes of multifunctions with these properties are considered. In Chapter 2, several product measurability results are proved for multifunctions which are measurable in the first and satisfy some special hypothesis in the second variable, e.g. • are either right continuous or left continuous in some sense, • are approximately h-equicontinuous with respect to a differentiation basis, • are lower semicontinuous and upper quasi-continuous, • are both upper and lower strong quasi-continuous with respect to a differentiation basis, • are derivatives. Chapter 3 is devoted to superpositional measurability of multifunctions. Some of the results of this chapter are consequences of results of Chapter 2 and Zygmunt's theorem on superpositional measurability of multifunctions which are measurable with respect to the product of a complete σ-field and the σ-field of Borel subsets of a Polish space. In general, a product measurable multifunction need not be superpositionally measurable. We prove that (in suitable spaces) multifunctions which are product measurable with respect to a σ-field more general than the product σ-field above and which also fulfill certain density conditions in the second variable are also superpositionally measurable. Counterexamples are also given to emphasize the need for some of the hypotheses.
LA - eng
KW - multifunction; two variables; measurability; sup-measurability; approximate continuity; strong quasi-continuity; differentiability; derivative
UR - http://eudml.org/doc/285954
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.