The numerical radius of Lipschitz operators on Banach spaces
Studia Mathematica (2012)
- Volume: 209, Issue: 1, page 43-52
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topRuidong Wang. "The numerical radius of Lipschitz operators on Banach spaces." Studia Mathematica 209.1 (2012): 43-52. <http://eudml.org/doc/286207>.
@article{RuidongWang2012,
abstract = {We study the numerical radius of Lipschitz operators on Banach spaces. We give its basic properties. Our main result is a characterization of finite-dimensional real Banach spaces with Lipschitz numerical index 1. We also explicitly compute the Lipschitz numerical index of some classical Banach spaces.},
author = {Ruidong Wang},
journal = {Studia Mathematica},
keywords = {Banach space; numerical radius; numerical index; Lipschitz operator},
language = {eng},
number = {1},
pages = {43-52},
title = {The numerical radius of Lipschitz operators on Banach spaces},
url = {http://eudml.org/doc/286207},
volume = {209},
year = {2012},
}
TY - JOUR
AU - Ruidong Wang
TI - The numerical radius of Lipschitz operators on Banach spaces
JO - Studia Mathematica
PY - 2012
VL - 209
IS - 1
SP - 43
EP - 52
AB - We study the numerical radius of Lipschitz operators on Banach spaces. We give its basic properties. Our main result is a characterization of finite-dimensional real Banach spaces with Lipschitz numerical index 1. We also explicitly compute the Lipschitz numerical index of some classical Banach spaces.
LA - eng
KW - Banach space; numerical radius; numerical index; Lipschitz operator
UR - http://eudml.org/doc/286207
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.