Computable categoricity versus relative computable categoricity
Rodney G. Downey; Asher M. Kach; Steffen Lempp; Daniel D. Turetsky
Fundamenta Mathematicae (2013)
- Volume: 221, Issue: 2, page 129-159
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topRodney G. Downey, et al. "Computable categoricity versus relative computable categoricity." Fundamenta Mathematicae 221.2 (2013): 129-159. <http://eudml.org/doc/286414>.
@article{RodneyG2013,
abstract = {We study the notion of computable categoricity of computable structures, comparing it especially to the notion of relative computable categoricity and its relativizations. We show that every 1 decidable computably categorical structure is relatively Δ⁰₂ categorical. We study the complexity of various index sets associated with computable categoricity and relative computable categoricity. We also introduce and study a variation of relative computable categoricity, comparing it to both computable categoricity and relative computable categoricity and its relativizations.},
author = {Rodney G. Downey, Asher M. Kach, Steffen Lempp, Daniel D. Turetsky},
journal = {Fundamenta Mathematicae},
keywords = {computable categoricity; relative computable categoricity},
language = {eng},
number = {2},
pages = {129-159},
title = {Computable categoricity versus relative computable categoricity},
url = {http://eudml.org/doc/286414},
volume = {221},
year = {2013},
}
TY - JOUR
AU - Rodney G. Downey
AU - Asher M. Kach
AU - Steffen Lempp
AU - Daniel D. Turetsky
TI - Computable categoricity versus relative computable categoricity
JO - Fundamenta Mathematicae
PY - 2013
VL - 221
IS - 2
SP - 129
EP - 159
AB - We study the notion of computable categoricity of computable structures, comparing it especially to the notion of relative computable categoricity and its relativizations. We show that every 1 decidable computably categorical structure is relatively Δ⁰₂ categorical. We study the complexity of various index sets associated with computable categoricity and relative computable categoricity. We also introduce and study a variation of relative computable categoricity, comparing it to both computable categoricity and relative computable categoricity and its relativizations.
LA - eng
KW - computable categoricity; relative computable categoricity
UR - http://eudml.org/doc/286414
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.