-categoricity of products of 1-unary algebras
Si dimostra che la conoscenza delle algebre di Boole dei definibili di modelli di cardinità di una teoria elementare è sufficiente per decidere il suo tipo di stabilità.
We continue the work of [2] and prove that for λ successor, a λ-categorical theory T in is μ-categorical for every μ ≤ λ which is above the -beth cardinal.
We assume a theory T in the logic is categorical in a cardinal λ κ, and κ is a measurable cardinal. We prove that the class of models of T of cardinality < λ (but ≥ |T|+κ) has the amalgamation property; this is a step toward understanding the character of such classes of models.
We study categoricity in power for reduced models of first order logic without equality.
This paper is part II of a study on cardinals that are characterizable by a Scott sentence, continuing previous work of the author. A cardinal κ is characterized by a Scott sentence if has a model of size κ, but no model of size κ⁺. The main question in this paper is the following: Are the characterizable cardinals closed under the powerset operation? We prove that if is characterized by a Scott sentence, then is (homogeneously) characterized by a Scott sentence, for all 0 < β₁ < ω₁....