Observer design using a partial nonlinear observer canonical form

Klaus Röbenack; Alan Lynch

International Journal of Applied Mathematics and Computer Science (2006)

  • Volume: 16, Issue: 3, page 333-343
  • ISSN: 1641-876X

Abstract

top
This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the advantages of the approach relative to the existing nonlinear observer design methods. The advantages of the proposed method include a relatively simple design procedure which can be broadly applied.

How to cite

top

Röbenack, Klaus, and Lynch, Alan. "Observer design using a partial nonlinear observer canonical form." International Journal of Applied Mathematics and Computer Science 16.3 (2006): 333-343. <http://eudml.org/doc/207797>.

@article{Röbenack2006,
abstract = {This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the advantages of the approach relative to the existing nonlinear observer design methods. The advantages of the proposed method include a relatively simple design procedure which can be broadly applied.},
author = {Röbenack, Klaus, Lynch, Alan},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {canonical form; detectability; observer design; nonlinear observer design; global asymptotic stability},
language = {eng},
number = {3},
pages = {333-343},
title = {Observer design using a partial nonlinear observer canonical form},
url = {http://eudml.org/doc/207797},
volume = {16},
year = {2006},
}

TY - JOUR
AU - Röbenack, Klaus
AU - Lynch, Alan
TI - Observer design using a partial nonlinear observer canonical form
JO - International Journal of Applied Mathematics and Computer Science
PY - 2006
VL - 16
IS - 3
SP - 333
EP - 343
AB - This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the advantages of the approach relative to the existing nonlinear observer design methods. The advantages of the proposed method include a relatively simple design procedure which can be broadly applied.
LA - eng
KW - canonical form; detectability; observer design; nonlinear observer design; global asymptotic stability
UR - http://eudml.org/doc/207797
ER -

References

top
  1. Amicucci G. L. and Monaco S. (1998): On nonlinear detectability. - J. Franklin Inst. 335B, Vol. 6, pp. 1105-1123. Zbl1030.93006
  2. Bestle D. and Zeitz M. (1983): Canonical form observer design for non-linear time-variable systems. - Int. J. Contr., Vol. 38, No. 2, pp. 419-431. Zbl0521.93012
  3. Birk J. and Zeitz M. (1988): Extended Luenberger observer for non-linear multivariable systems. - Int. J. Contr., Vol. 47,No. 6, pp. 1823-1836. Zbl0648.93022
  4. Brunovsky P. (1970): A classification of linear controllable systems.- Kybernetica, Vol. 6, No. 3, pp. 173-188. Zbl0199.48202
  5. Gauthier J. P., Hammouri H. and Othman S. (1992): A simple observer for nonlinear systems - Application to bioreactors.- IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875-880. Zbl0775.93020
  6. Hermann R. and Krener A. J. (1977): Nonlinear controllability and observability. - IEEE Trans. Automat. Contr., Vol. AC-22, No.5, pp. 728-740. Zbl0396.93015
  7. Isidori A. (1995): Nonlinear Control Systems: An Introduction, 3-rd Edn. - London: Springer. 
  8. Jo N. H. and Seo J. H. (2002): Observer design for non-linear systems that are not uniformly observable. - Int. J. Contr.,Vol. 75, No. 5, pp. 369-380. Zbl1059.93021
  9. Kazantzis N. and Kravaris C. (1998): Nonlinear observer design using Lyapunov's auxiliary theorem. - Syst. Contr. Lett.,Vol. 34, pp. 241-247. Zbl0909.93002
  10. Keller H. (1986): Entwurf nichtlinearer Beobachter mittels Normalformen. - Dusseldorf: VDI-Verlag. 
  11. Krener A. and Xiao M. (2002): Nonlinear observer design in the siegel domain. - SIAM J. Contr. Optim., Vol. 41, No. 3, pp. 932-953. Zbl1052.93013
  12. Krener A., Hubbard M., Karaham S., Phelps A. and Maag B. (1991): Poincare's linearization method applied to the design of nonlinear compensators. - Proc. Algebraic Computing in Control, Vol. 165 of Lecture Notes in Control and Information Science, Berlin: Springer, pp. 76-114. Zbl0793.93047
  13. Krener A. J. and Isidori A. (1983): Linearization by output injection and nonlinear observers. - Syst. Contr. Lett., Vol. 3, pp. 47-52. Zbl0524.93030
  14. Krener A. J. and Respondek W. (1985): Nonlinear observers with linearizable error dynamics. - SIAM J. Contr. Optim.,Vol. 23, No. 2, pp. 197-216. Zbl0569.93035
  15. Lynch A. and Bortoff S. (2001): Nonlinear observers with approximately linear error dynamics: The multivariable case.- IEEE Trans. Automat. Contr., Vol. 46, No. 7, pp. 927-932. Zbl1037.93014
  16. Marino R. and Tomei P. (1995): Nonlinear Control Design: Geometric, Adaptive and Robust. - London: Prentice Hall. Zbl0833.93003
  17. Moore E. H. (1920): On the reciprocal of the general algebraic matrix.- Bull. Amer. Math. Soc., Vol. 26, pp. 394-395. 
  18. Mukhopadhyay B. K. and Malik O. P. (1972): Optimal control of synchronous-machine excitation by quasilinearisation techniques.- Proc. IEE, Vol. 119, No. 1, pp. 91-98. 
  19. Nijmeijer H. and van der Schaft A. J. (1990): Nonlinear Dynamical Control Systems. - New York: Springer. Zbl0701.93001
  20. Phelps A. R. (1991): On constructing nonlinear observers.- SIAM J. Contr. Optim., Vol. 29, No. 3, pp. 516-534. Zbl0738.93032
  21. Respondek W. (1986): Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems. - Proc. Algebraic and Geometric Methods in Nonlinear Control, Dordrecht: Reidel, pp. 257-284. Zbl0605.93033
  22. Respondek W., Pogromsky A. and Nijmeijer H. (2004): Time scaling for observer design with linearizable error dynamics. - Automatica, Vol. 40, No. 2, pp. 277-285. Zbl1055.93010
  23. Rbenack K. and Lynch A. F. (2004): High-gain nonlinear observer design using the observer canonical form. - J. Franklin Institute, submitted. 
  24. Rudolph J. and Zeitz M. (1994): A block triangular nonlinear observer normal form. - Syst. Contr. Lett., Vol. 23, pp. 1-8. Zbl0818.93006
  25. Schweitzer G., Bleuler H. and Traxler A. (1994): Active Magnetic Bearings. - Zurich: VDF . 
  26. Shim H., Son Y. I. and Seo J. H. (2001): Semi-global observer for multi-output nonlinear systems. - Syst. Contr. Lett., Vol. 42,No. 3, pp. 233-244. Zbl0985.93006
  27. Sontag E. D. and Wang Y. (1997): Output-to-state stability and detectability of nonlinear system. - Syst. Contr. Lett., Vol. 29, No. 5, pp. 279-290. Zbl0901.93062
  28. Wang Y. and Lynch A. (2005): Block triangular observer forms for nonlinear observer design. - Automatica, (submitted). 
  29. Wang Y. and Lynch A. (2006): A block triangular form for nonlinear observer design. - IEEE Trans. Automat. Contr., (to appear). Zbl1152.93319
  30. Xia X.-H. and Gao W.-B. (1988): Non-linear observer design by observer canonical form. - Int. J. Contr., Vol. 47, No. 4, pp. 1081-1100. Zbl0643.93011
  31. Xia X. H. and Gao W. B. (1989): Nonlinear observer design by observer error linearization. - SIAM J. Contr. Optim., Vol. 27, No. 1, pp. 199-216. Zbl0667.93014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.