Observer design using a partial nonlinear observer canonical form
International Journal of Applied Mathematics and Computer Science (2006)
- Volume: 16, Issue: 3, page 333-343
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topRöbenack, Klaus, and Lynch, Alan. "Observer design using a partial nonlinear observer canonical form." International Journal of Applied Mathematics and Computer Science 16.3 (2006): 333-343. <http://eudml.org/doc/207797>.
@article{Röbenack2006,
abstract = {This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the advantages of the approach relative to the existing nonlinear observer design methods. The advantages of the proposed method include a relatively simple design procedure which can be broadly applied.},
author = {Röbenack, Klaus, Lynch, Alan},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {canonical form; detectability; observer design; nonlinear observer design; global asymptotic stability},
language = {eng},
number = {3},
pages = {333-343},
title = {Observer design using a partial nonlinear observer canonical form},
url = {http://eudml.org/doc/207797},
volume = {16},
year = {2006},
}
TY - JOUR
AU - Röbenack, Klaus
AU - Lynch, Alan
TI - Observer design using a partial nonlinear observer canonical form
JO - International Journal of Applied Mathematics and Computer Science
PY - 2006
VL - 16
IS - 3
SP - 333
EP - 343
AB - This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the advantages of the approach relative to the existing nonlinear observer design methods. The advantages of the proposed method include a relatively simple design procedure which can be broadly applied.
LA - eng
KW - canonical form; detectability; observer design; nonlinear observer design; global asymptotic stability
UR - http://eudml.org/doc/207797
ER -
References
top- Amicucci G. L. and Monaco S. (1998): On nonlinear detectability. - J. Franklin Inst. 335B, Vol. 6, pp. 1105-1123. Zbl1030.93006
- Bestle D. and Zeitz M. (1983): Canonical form observer design for non-linear time-variable systems. - Int. J. Contr., Vol. 38, No. 2, pp. 419-431. Zbl0521.93012
- Birk J. and Zeitz M. (1988): Extended Luenberger observer for non-linear multivariable systems. - Int. J. Contr., Vol. 47,No. 6, pp. 1823-1836. Zbl0648.93022
- Brunovsky P. (1970): A classification of linear controllable systems.- Kybernetica, Vol. 6, No. 3, pp. 173-188. Zbl0199.48202
- Gauthier J. P., Hammouri H. and Othman S. (1992): A simple observer for nonlinear systems - Application to bioreactors.- IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875-880. Zbl0775.93020
- Hermann R. and Krener A. J. (1977): Nonlinear controllability and observability. - IEEE Trans. Automat. Contr., Vol. AC-22, No.5, pp. 728-740. Zbl0396.93015
- Isidori A. (1995): Nonlinear Control Systems: An Introduction, 3-rd Edn. - London: Springer.
- Jo N. H. and Seo J. H. (2002): Observer design for non-linear systems that are not uniformly observable. - Int. J. Contr.,Vol. 75, No. 5, pp. 369-380. Zbl1059.93021
- Kazantzis N. and Kravaris C. (1998): Nonlinear observer design using Lyapunov's auxiliary theorem. - Syst. Contr. Lett.,Vol. 34, pp. 241-247. Zbl0909.93002
- Keller H. (1986): Entwurf nichtlinearer Beobachter mittels Normalformen. - Dusseldorf: VDI-Verlag.
- Krener A. and Xiao M. (2002): Nonlinear observer design in the siegel domain. - SIAM J. Contr. Optim., Vol. 41, No. 3, pp. 932-953. Zbl1052.93013
- Krener A., Hubbard M., Karaham S., Phelps A. and Maag B. (1991): Poincare's linearization method applied to the design of nonlinear compensators. - Proc. Algebraic Computing in Control, Vol. 165 of Lecture Notes in Control and Information Science, Berlin: Springer, pp. 76-114. Zbl0793.93047
- Krener A. J. and Isidori A. (1983): Linearization by output injection and nonlinear observers. - Syst. Contr. Lett., Vol. 3, pp. 47-52. Zbl0524.93030
- Krener A. J. and Respondek W. (1985): Nonlinear observers with linearizable error dynamics. - SIAM J. Contr. Optim.,Vol. 23, No. 2, pp. 197-216. Zbl0569.93035
- Lynch A. and Bortoff S. (2001): Nonlinear observers with approximately linear error dynamics: The multivariable case.- IEEE Trans. Automat. Contr., Vol. 46, No. 7, pp. 927-932. Zbl1037.93014
- Marino R. and Tomei P. (1995): Nonlinear Control Design: Geometric, Adaptive and Robust. - London: Prentice Hall. Zbl0833.93003
- Moore E. H. (1920): On the reciprocal of the general algebraic matrix.- Bull. Amer. Math. Soc., Vol. 26, pp. 394-395.
- Mukhopadhyay B. K. and Malik O. P. (1972): Optimal control of synchronous-machine excitation by quasilinearisation techniques.- Proc. IEE, Vol. 119, No. 1, pp. 91-98.
- Nijmeijer H. and van der Schaft A. J. (1990): Nonlinear Dynamical Control Systems. - New York: Springer. Zbl0701.93001
- Phelps A. R. (1991): On constructing nonlinear observers.- SIAM J. Contr. Optim., Vol. 29, No. 3, pp. 516-534. Zbl0738.93032
- Respondek W. (1986): Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems. - Proc. Algebraic and Geometric Methods in Nonlinear Control, Dordrecht: Reidel, pp. 257-284. Zbl0605.93033
- Respondek W., Pogromsky A. and Nijmeijer H. (2004): Time scaling for observer design with linearizable error dynamics. - Automatica, Vol. 40, No. 2, pp. 277-285. Zbl1055.93010
- Rbenack K. and Lynch A. F. (2004): High-gain nonlinear observer design using the observer canonical form. - J. Franklin Institute, submitted.
- Rudolph J. and Zeitz M. (1994): A block triangular nonlinear observer normal form. - Syst. Contr. Lett., Vol. 23, pp. 1-8. Zbl0818.93006
- Schweitzer G., Bleuler H. and Traxler A. (1994): Active Magnetic Bearings. - Zurich: VDF .
- Shim H., Son Y. I. and Seo J. H. (2001): Semi-global observer for multi-output nonlinear systems. - Syst. Contr. Lett., Vol. 42,No. 3, pp. 233-244. Zbl0985.93006
- Sontag E. D. and Wang Y. (1997): Output-to-state stability and detectability of nonlinear system. - Syst. Contr. Lett., Vol. 29, No. 5, pp. 279-290. Zbl0901.93062
- Wang Y. and Lynch A. (2005): Block triangular observer forms for nonlinear observer design. - Automatica, (submitted).
- Wang Y. and Lynch A. (2006): A block triangular form for nonlinear observer design. - IEEE Trans. Automat. Contr., (to appear). Zbl1152.93319
- Xia X.-H. and Gao W.-B. (1988): Non-linear observer design by observer canonical form. - Int. J. Contr., Vol. 47, No. 4, pp. 1081-1100. Zbl0643.93011
- Xia X. H. and Gao W. B. (1989): Nonlinear observer design by observer error linearization. - SIAM J. Contr. Optim., Vol. 27, No. 1, pp. 199-216. Zbl0667.93014
Citations in EuDML Documents
top- Wen-Jeng Liu, Variable structure observer design for a class of uncertain systems with a time-varying delay
- Benoît Schwaller, Denis Ensminger, Birgitta Dresp-Langley, José Ragot, State estimation for miso non-linear systems in controller canonical form
- Benoît Schwaller, Denis Ensminger, Birgitta Dresp-Langley, José Ragot, State estimation for a class of nonlinear systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.