On the strongly ambiguous classes of some biquadratic number fields
Abdelmalek Azizi; Abdelkader Zekhnini; Mohammed Taous
Mathematica Bohemica (2016)
- Volume: 141, Issue: 3, page 363-384
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAzizi, Abdelmalek, Zekhnini, Abdelkader, and Taous, Mohammed. "On the strongly ambiguous classes of some biquadratic number fields." Mathematica Bohemica 141.3 (2016): 363-384. <http://eudml.org/doc/286792>.
@article{Azizi2016,
abstract = {We study the capitulation of $2$-ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\mathbb \{k\}=\mathbb \{Q\}(\sqrt\{2pq\}, \{\rm i\})$, where $\{\rm i\}=\sqrt\{-1\}$ and $p\equiv -q\equiv 1 \hspace\{4.44443pt\}(\@mod \; 4)$ are different primes. For each of the three quadratic extensions $\mathbb \{K\}/\mathbb \{k\}$ inside the absolute genus field $\mathbb \{k\}^\{(*)\}$ of $\mathbb \{k\}$, we determine a fundamental system of units and then compute the capitulation kernel of $\mathbb \{K\}/\mathbb \{k\}$. The generators of the groups $\{\rm Am\}_s(\mathbb \{k\}/F)$ and $\{\rm Am\}(\mathbb \{k\}/F)$ are also determined from which we deduce that $\mathbb \{k\}^\{(*)\}$ is smaller than the relative genus field $(\mathbb \{k\}/\mathbb \{Q\}(\{\rm i\}))^*$. Then we prove that each strongly ambiguous class of $\mathbb \{k\}/\mathbb \{Q\}(\{\rm i\})$ capitulates already in $\mathbb \{k\}^\{(*)\}$, which gives an example generalizing a theorem of Furuya (1977).},
author = {Azizi, Abdelmalek, Zekhnini, Abdelkader, Taous, Mohammed},
journal = {Mathematica Bohemica},
keywords = {absolute genus field; relative genus field; fundamental system of units; 2-class group; capitulation; quadratic field; biquadratic field; multiquadratic CM-field},
language = {eng},
number = {3},
pages = {363-384},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the strongly ambiguous classes of some biquadratic number fields},
url = {http://eudml.org/doc/286792},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Azizi, Abdelmalek
AU - Zekhnini, Abdelkader
AU - Taous, Mohammed
TI - On the strongly ambiguous classes of some biquadratic number fields
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 3
SP - 363
EP - 384
AB - We study the capitulation of $2$-ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\mathbb {k}=\mathbb {Q}(\sqrt{2pq}, {\rm i})$, where ${\rm i}=\sqrt{-1}$ and $p\equiv -q\equiv 1 \hspace{4.44443pt}(\@mod \; 4)$ are different primes. For each of the three quadratic extensions $\mathbb {K}/\mathbb {k}$ inside the absolute genus field $\mathbb {k}^{(*)}$ of $\mathbb {k}$, we determine a fundamental system of units and then compute the capitulation kernel of $\mathbb {K}/\mathbb {k}$. The generators of the groups ${\rm Am}_s(\mathbb {k}/F)$ and ${\rm Am}(\mathbb {k}/F)$ are also determined from which we deduce that $\mathbb {k}^{(*)}$ is smaller than the relative genus field $(\mathbb {k}/\mathbb {Q}({\rm i}))^*$. Then we prove that each strongly ambiguous class of $\mathbb {k}/\mathbb {Q}({\rm i})$ capitulates already in $\mathbb {k}^{(*)}$, which gives an example generalizing a theorem of Furuya (1977).
LA - eng
KW - absolute genus field; relative genus field; fundamental system of units; 2-class group; capitulation; quadratic field; biquadratic field; multiquadratic CM-field
UR - http://eudml.org/doc/286792
ER -
References
top- Azizi, A., On the capitulation of the 2-class group of where , Acta Arith. 94 French (2000), 383-399. (2000) MR1779950
- Azizi, A., Units of certain imaginary abelian number fields over , Ann. Sci. Math. Qué. 23 French (1999), 15-21. (1999) Zbl1041.11072MR1721726
- Azizi, A., Taous, M., Determination of the fields given the 2-class groups are of type or , Rend. Ist. Mat. Univ. Trieste 40 French (2008), 93-116. (2008) MR2583453
- Azizi, A., Zekhnini, A., Taous, M., On the strongly ambiguous classes of where , Asian-Eur. J. Math. 7 (2014), Article ID 1450021, 26 pages. (2014) MR3189588
- Azizi, A., Zekhnini, A., Taous, M., Structure of for some fields with , Abh. Math. Semin. Univ. Hamb. 84 (2014), 203-231. (2014) MR3267742
- Azizi, A., Zekhnini, A., Taous, M., On the generators of the -class group of the field , Int. J. of Pure and Applied Math. 81 (2012), 773-784. (2012) MR2974674
- Azizi, A., Zekhnini, A., Taous, M., On the unramified quadratic and biquadratic extensions of the field , Int. J. Algebra 6 (2012), 1169-1173. (2012) Zbl1284.11142MR2974674
- Chevalley, C., Sur la théorie du corps de classes dans les corps finis et les corps locaux, J. Fac. Sci., Univ. Tokyo, Sect. (1) 2 French (1933), 365-476. (1933) Zbl0008.05301
- Furuya, H., 10.1016/0022-314X(77)90045-2, J. Number Theory 9 (1977), 4-15. (1977) Zbl0347.12006MR0429820DOI10.1016/0022-314X(77)90045-2
- Gras, G., Class Field Theory: From Theory to Practice, Springer Monographs in Mathematics Springer, Berlin (2003). (2003) Zbl1019.11032MR1941965
- Hasse, H., On the class number of abelian number fields, Mathematische Lehrbücher und Monographien I Akademie, Berlin German (1952). (1952) Zbl0046.26003MR0834791
- Heider, F.-P., Schmithals, B., Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 336 German (1982), 1-25. (1982) Zbl0505.12016MR0671319
- Hirabayashi, M., Yoshino, K.-I., 10.1016/0022-314X(90)90141-D, J. Number Theory 34 (1990), 346-361. (1990) Zbl0705.11065MR1049510DOI10.1016/0022-314X(90)90141-D
- Kubota, T., 10.1017/S0027763000000088, Nagoya Math. J. 10 German (1956), 65-85. (1956) Zbl0074.03001MR0083009DOI10.1017/S0027763000000088
- Lemmermeyer, F., The ambiguous class number formula revisited, J. Ramanujan Math. Soc. 28 (2013), 415-421. (2013) MR3158989
- Louboutin, S., 10.1002/1522-2616(200007)215:1<107::AID-MANA107>3.0.CO;2-A, Math. Nachr. 215 (2000), 107-113. (2000) Zbl0972.11105MR1768197DOI10.1002/1522-2616(200007)215:1<107::AID-MANA107>3.0.CO;2-A
- McCall, T. M., Parry, C. J., Ranalli, R., 10.1006/jnth.1995.1079, J. Number Theory 53 (1995), 88-99. (1995) Zbl0831.11059MR1344833DOI10.1006/jnth.1995.1079
- Sime, P. J., 10.1090/S0002-9947-1995-1333398-3, Trans. Am. Math. Soc. 347 (1995), 4855-4876. (1995) Zbl0847.11060MR1333398DOI10.1090/S0002-9947-1995-1333398-3
- Terada, F., 10.2748/tmj/1178242555, Tohoku Math. J. (2) 23 (1971), 697-718. (1971) Zbl0243.12003MR0306158DOI10.2748/tmj/1178242555
- Wada, H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci., Univ. Tokyo, Sect. (1) 13 (1966), 201-209. (1966) Zbl0158.30103MR0214565
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.