On the 2 -class group of some number fields with large degree

Mohamed Mahmoud Chems-Eddin; Abdelmalek Azizi; Abdelkader Zekhnini

Archivum Mathematicum (2021)

  • Volume: 057, Issue: 1, page 13-26
  • ISSN: 0044-8753

Abstract

top
Let d be an odd square-free integer, m 3 any integer and L m , d : = ( ζ 2 m , d ) . In this paper, we shall determine all the fields L m , d having an odd class number. Furthermore, using the cyclotomic 2 -extensions of some number fields, we compute the rank of the 2 -class group of L m , d whenever the prime divisors of d are congruent to 3 or 5 ( mod 8 ) .

How to cite

top

Chems-Eddin, Mohamed Mahmoud, Azizi, Abdelmalek, and Zekhnini, Abdelkader. "On the $2$-class group of some number fields with large degree." Archivum Mathematicum 057.1 (2021): 13-26. <http://eudml.org/doc/297322>.

@article{Chems2021,
abstract = {Let $d$ be an odd square-free integer, $m\ge 3$ any integer and $L_\{m, d\}:=\mathbb \{Q\}(\zeta _\{2^m\},\sqrt\{d\})$. In this paper, we shall determine all the fields $L_\{m, d\}$ having an odd class number. Furthermore, using the cyclotomic $\mathbb \{Z\}_2$-extensions of some number fields, we compute the rank of the $2$-class group of $L_\{m, d\}$ whenever the prime divisors of $d$ are congruent to $3$ or $5\hspace\{4.44443pt\}(\@mod \; 8)$.},
author = {Chems-Eddin, Mohamed Mahmoud, Azizi, Abdelmalek, Zekhnini, Abdelkader},
journal = {Archivum Mathematicum},
keywords = {cyclotomic $\mathbb \{Z\}_2$-extension; $2$-rank; $2$-class group},
language = {eng},
number = {1},
pages = {13-26},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the $2$-class group of some number fields with large degree},
url = {http://eudml.org/doc/297322},
volume = {057},
year = {2021},
}

TY - JOUR
AU - Chems-Eddin, Mohamed Mahmoud
AU - Azizi, Abdelmalek
AU - Zekhnini, Abdelkader
TI - On the $2$-class group of some number fields with large degree
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 1
SP - 13
EP - 26
AB - Let $d$ be an odd square-free integer, $m\ge 3$ any integer and $L_{m, d}:=\mathbb {Q}(\zeta _{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}$ having an odd class number. Furthermore, using the cyclotomic $\mathbb {Z}_2$-extensions of some number fields, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the prime divisors of $d$ are congruent to $3$ or $5\hspace{4.44443pt}(\@mod \; 8)$.
LA - eng
KW - cyclotomic $\mathbb {Z}_2$-extension; $2$-rank; $2$-class group
UR - http://eudml.org/doc/297322
ER -

References

top
  1. Azizi, A., Chems-Eddin, M.M., Zekhnini, A., 10.1007/s12215-020-00589-0, Rend. Circ. Mat. Palermo, II Ser. (2019), 19 pp., https://doi.org/10.1007/s12215-020-00589-0. (2019) DOI10.1007/s12215-020-00589-0
  2. Azizi, A., Zekhnini, A., Taous, M., 10.21136/MB.2016.0022-14, Math. Bohem. 14 (2016), 363–384. (2016) MR3557585DOI10.21136/MB.2016.0022-14
  3. Chems-Eddin, M.M., Müller, K., 2 -class groups of cyclotomic towers of imaginary biquadratic fields and applications, Accepted for publication in Int. J. Number Theory, arXiv:2002.03602. 
  4. Connor, P.E., Hurrelbrink, J., Class number parity, Series in Pure Mathematics, World Scientific, 1988. (1988) MR0963648
  5. Fukuda, T., 10.3792/pjaa.70.264, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 264–266. (1994) MR1303577DOI10.3792/pjaa.70.264
  6. Gras, G., 10.5802/aif.480, Ann. Inst. Fourier (Grenoble) 23 (1973), 1–48. (1973) MR0360519DOI10.5802/aif.480
  7. Hilbert, D., 10.1007/BF01905120, Math. Annal. 51 (1898), 1–127. (1898) DOI10.1007/BF01905120
  8. Hubbard, D., Washington, L.C., Iwasawa Invariants of some non-cyclotomic -extensions, arXiv:1703.06550. MR3778621
  9. Lemmermeyer, F., 10.4064/aa-66-3-245-260, Acta Arith. 66 (1994), 245–260. (1994) Zbl0807.11052MR1276992DOI10.4064/aa-66-3-245-260
  10. Li, J., Ouyang, Y., Xu, Y., Zhang, S., l -class groups of fields in Kummer towers, arXiv:1905.04966. 
  11. Masley, J.M., Montgomery, H.L., Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248–256. (1976) MR0429824
  12. McCall, T.M., Parry, C.J., Ranalli, R.R., 10.1006/jnth.1995.1079, J. Number Theory 53 (1995), 88–99. (1995) MR1344833DOI10.1006/jnth.1995.1079
  13. Mouhib, A., Movahhedi, A., 10.1007/s00229-010-0407-8, Manuscripta Math. 135 (2011), 91–106. (2011) MR2783388DOI10.1007/s00229-010-0407-8
  14. Washington, L.C., Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, second ed., 1997. (1997) MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.