On the -class group of some number fields with large degree
Mohamed Mahmoud Chems-Eddin; Abdelmalek Azizi; Abdelkader Zekhnini
Archivum Mathematicum (2021)
- Volume: 057, Issue: 1, page 13-26
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topChems-Eddin, Mohamed Mahmoud, Azizi, Abdelmalek, and Zekhnini, Abdelkader. "On the $2$-class group of some number fields with large degree." Archivum Mathematicum 057.1 (2021): 13-26. <http://eudml.org/doc/297322>.
@article{Chems2021,
abstract = {Let $d$ be an odd square-free integer, $m\ge 3$ any integer and $L_\{m, d\}:=\mathbb \{Q\}(\zeta _\{2^m\},\sqrt\{d\})$. In this paper, we shall determine all the fields $L_\{m, d\}$ having an odd class number. Furthermore, using the cyclotomic $\mathbb \{Z\}_2$-extensions of some number fields, we compute the rank of the $2$-class group of $L_\{m, d\}$ whenever the prime divisors of $d$ are congruent to $3$ or $5\hspace\{4.44443pt\}(\@mod \; 8)$.},
author = {Chems-Eddin, Mohamed Mahmoud, Azizi, Abdelmalek, Zekhnini, Abdelkader},
journal = {Archivum Mathematicum},
keywords = {cyclotomic $\mathbb \{Z\}_2$-extension; $2$-rank; $2$-class group},
language = {eng},
number = {1},
pages = {13-26},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the $2$-class group of some number fields with large degree},
url = {http://eudml.org/doc/297322},
volume = {057},
year = {2021},
}
TY - JOUR
AU - Chems-Eddin, Mohamed Mahmoud
AU - Azizi, Abdelmalek
AU - Zekhnini, Abdelkader
TI - On the $2$-class group of some number fields with large degree
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 1
SP - 13
EP - 26
AB - Let $d$ be an odd square-free integer, $m\ge 3$ any integer and $L_{m, d}:=\mathbb {Q}(\zeta _{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}$ having an odd class number. Furthermore, using the cyclotomic $\mathbb {Z}_2$-extensions of some number fields, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the prime divisors of $d$ are congruent to $3$ or $5\hspace{4.44443pt}(\@mod \; 8)$.
LA - eng
KW - cyclotomic $\mathbb {Z}_2$-extension; $2$-rank; $2$-class group
UR - http://eudml.org/doc/297322
ER -
References
top- Azizi, A., Chems-Eddin, M.M., Zekhnini, A., 10.1007/s12215-020-00589-0, Rend. Circ. Mat. Palermo, II Ser. (2019), 19 pp., https://doi.org/10.1007/s12215-020-00589-0. (2019) DOI10.1007/s12215-020-00589-0
- Azizi, A., Zekhnini, A., Taous, M., 10.21136/MB.2016.0022-14, Math. Bohem. 14 (2016), 363–384. (2016) MR3557585DOI10.21136/MB.2016.0022-14
- Chems-Eddin, M.M., Müller, K., -class groups of cyclotomic towers of imaginary biquadratic fields and applications, Accepted for publication in Int. J. Number Theory, arXiv:2002.03602.
- Connor, P.E., Hurrelbrink, J., Class number parity, Series in Pure Mathematics, World Scientific, 1988. (1988) MR0963648
- Fukuda, T., 10.3792/pjaa.70.264, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 264–266. (1994) MR1303577DOI10.3792/pjaa.70.264
- Gras, G., 10.5802/aif.480, Ann. Inst. Fourier (Grenoble) 23 (1973), 1–48. (1973) MR0360519DOI10.5802/aif.480
- Hilbert, D., 10.1007/BF01905120, Math. Annal. 51 (1898), 1–127. (1898) DOI10.1007/BF01905120
- Hubbard, D., Washington, L.C., Iwasawa Invariants of some non-cyclotomic -extensions, arXiv:1703.06550. MR3778621
- Lemmermeyer, F., 10.4064/aa-66-3-245-260, Acta Arith. 66 (1994), 245–260. (1994) Zbl0807.11052MR1276992DOI10.4064/aa-66-3-245-260
- Li, J., Ouyang, Y., Xu, Y., Zhang, S., -class groups of fields in Kummer towers, arXiv:1905.04966.
- Masley, J.M., Montgomery, H.L., Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248–256. (1976) MR0429824
- McCall, T.M., Parry, C.J., Ranalli, R.R., 10.1006/jnth.1995.1079, J. Number Theory 53 (1995), 88–99. (1995) MR1344833DOI10.1006/jnth.1995.1079
- Mouhib, A., Movahhedi, A., 10.1007/s00229-010-0407-8, Manuscripta Math. 135 (2011), 91–106. (2011) MR2783388DOI10.1007/s00229-010-0407-8
- Washington, L.C., Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, second ed., 1997. (1997) MR1421575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.